Solveeit Logo

Question

Mathematics Question on Binomial theorem

The value of (21C110C1)+(21C210C2)+(21C310C3)+(21C410C4)+....+(21C1010C10)(^{21}C_{1} - ^{10}C_{1}) + (^{21}C_{2} - ^{10}C_{2}) + (^{21}C_{3} - ^{10}C_{3}) +(^{21}C_{4} - ^{10}C_{4}) +....+(^{21}C_{10} - ^{10}C_{10}) is :

A

2212102^{21} - 2^{10}

B

220292^{20} - 2^{9}

C

2202102^{20} - 2^{10}

D

2212112^{21} - 2^{11}

Answer

2202102^{20} - 2^{10}

Explanation

Solution

= ^{21}C_{1}+^{21}C_{2}+...+^{21}C_{10} \frac{1}{2}\left\\{^{21}C_{0}+^{21}C_{1}+...+^{21}C_{21}\right\\}-1 =2201= 2^{20}-1 (10C1+10C2+...+10C10)=2101\left(^{10}C_{1}+^{10}C_{2}+...+^{10}C_{10}\right) = 2^{10}-1 \therefore Required sum =(2201)(2101)= \left(2^{20} - 1\right) - \left(2^{10} - 1\right) =220210= 2^{20} - 2^{10}