Question
Mathematics Question on Binomial theorem
The value of (21C1−10C1)+(21C2−10C2)+(21C3−10C3)+(21C4−10C4)+....+(21C10−10C10) is :
A
221−210
B
220−29
C
220−210
D
221−211
Answer
220−210
Explanation
Solution
= ^{21}C_{1}+^{21}C_{2}+...+^{21}C_{10} \frac{1}{2}\left\\{^{21}C_{0}+^{21}C_{1}+...+^{21}C_{21}\right\\}-1 =220−1 (10C1+10C2+...+10C10)=210−1 ∴ Required sum =(220−1)−(210−1) =220−210