Solveeit Logo

Question

Mathematics Question on Permutations

The value of 20!+21!1!+22!2!+.....+60!40!20! + \frac{21!}{1!} + \frac{22!}{2!} + ..... + \frac{60!}{40!} is

A

20!61C2020! {^{61}C_{20}}

B

21!60C2021! {^{60}C_{20}}

C

20!61C2120! {^{61}C_{21}}

D

21!60C1921! {^{60}C_{19}}

Answer

20!61C2120! {^{61}C_{21}}

Explanation

Solution

We have,
20!+21!1!+22!2!+...+60!40!20! +\frac{21!}{1!} + \frac{22!}{2!} + ... +\frac{60!}{40!}
=20![1+21!20!1!+22!20!2!+...+60!40!20!]=20! \left[ 1+\frac{21!}{20!1!} + \frac{22!}{20!2!} +... +\frac{60!}{40!20!}\right]
=20![21C0+21C1+22C2+...+60C40]= 20! \left[\,^{21}C_{0} +\,^{21}C_{1} +\,^{22}C_{2} +...+ \,^{60}C_{40}\right]
=20![22C1+22C2+...+60C40]= 20!\left[\,^{22}C_{1} + \,^{22}C_{2}+...+\,^{60}C_{40}\right]
[nCr1+nCr=n+1Cr]\left[\,^{n}C_{r-1} +\,^{n}C_{r} = \,^{n+1}C_{r}\right]
=20![61C40]=20!61C21= 20! \left[ \,^{61}C_{40}\right] = 20! \cdot \,^{61}C_{21}