Question
Mathematics Question on Properties of Inverse Trigonometric Functions
The value of 2tan−1(cosectan−1x−tancot−1x)) is
A
tan−1x
B
tanx
C
cotx
D
cosec−1x
Answer
tan−1x
Explanation
Solution
2tan−1(cosectan−1x−tancot−1x)
= 2 \tan ^{-1}\left[\operatorname{cosec}\left\\{\operatorname{cosec}^{-1} \frac{\sqrt{1+x^{2}}}{x}\right\\}\right.
−tantan−121]
=2tan−1[x1+x2−x1]
= 2 \tan ^{-1}\left\\{\frac{\sqrt{1+x^{2}-1}}{x}\right\\}
= 2 \tan ^{-1}\left\\{\frac{\sec \theta-1}{\tan \theta}\right\\} \,\,(\text { put } x=\tan \theta)
= 2 \tan ^{-1}\left\\{\frac{1-\cos \theta}{\sin \theta}\right\\}
=2 \tan ^{-1}\left\\{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}\right\\}
=2tan−1tan2θ
=2⋅2θ=θ=tan−1x