Solveeit Logo

Question

Question: The value of \[^2{P_1}{ + ^3}{P_1} + ........{ + ^n}{P_1}\] is equal to A. \[\dfrac{{{n^2} - n + ...

The value of 2P1+3P1+........+nP1^2{P_1}{ + ^3}{P_1} + ........{ + ^n}{P_1} is equal to
A. n2n+22\dfrac{{{n^2} - n + 2}}{2}
B. n2+n+22\dfrac{{{n^2} + n + 2}}{2}
C. n2+n12\dfrac{{{n^2} + n - 1}}{2}
D. n2n12\dfrac{{{n^2} - n - 1}}{2}
E. n2+n22\dfrac{{{n^2} + n - 2}}{2}

Explanation

Solution

Hint : Add and subtract 11 in the value given. Use the basic formulas of Permutation that is nPr=n!(nr)!^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}. Division type of permutation like 7P5=7!(75)!=7!2!=7×6×5×4×3×2!2!=7×6×5×4×3=2520^7{P_5} = \dfrac{{7!}}{{\left( {7 - 5} \right)!}} = \dfrac{{7!}}{{2!}} = \dfrac{{7 \times 6 \times 5 \times 4 \times 3 \times 2!}}{{2!}} = 7 \times 6 \times 5 \times 4 \times 3 = 2520
Just add the values, add them and get the results. The value of nP1^n{P_1} always gives nn.Similarly for the other values too. Use of sum of series of natural numbers.

Complete step-by-step answer :
We are given with 2P1+3P1+........+nP1^2{P_1}{ + ^3}{P_1} + ........{ + ^n}{P_1}
From the permutation formula that is nPr=n!(nr)!^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}};
Now, Let’s see for first term 2P1^2{P_1}, put the values in the above formula we get:

nPr=n!(nr)! 2P1=2!(21)!=2!1!=2×11=2    ^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}} \\\ ^2{P_1} = \dfrac{{2!}}{{\left( {2 - 1} \right)!}} = \dfrac{{2!}}{{1!}} = \dfrac{{2 \times 1}}{1} = 2 \\\ \;

Similarly check for 3P1^3{P_1}, and we get:

nPr=n!(nr)! 3P1=3!(31)!=3!2!=3×2×12×1=3    ^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}} \\\ ^3{P_1} = \dfrac{{3!}}{{\left( {3 - 1} \right)!}} = \dfrac{{3!}}{{2!}} = \dfrac{{3 \times 2 \times 1}}{{2 \times 1}} = 3 \\\ \;

And, also for others we will get the same. So overall
nP1=n^n{P_1} = n.
Now, the question becomes:

2P1+3P1+........+nP1 =2+3+4+.......+n   ^2{P_1}{ + ^3}{P_1} + ........{ + ^n}{P_1} \\\ = 2 + 3 + 4 + ....... + n \;

Adding 11 in the above value, but if we are adding one new value then we have to subtract that term to get the original term.
Now,

2+3+4+.......+n =1+2+3+4+.......+n1   2 + 3 + 4 + ....... + n \\\ = 1 + 2 + 3 + 4 + ....... + n - 1 \;

Separate the values into two parts that is:
(1+2+3+4+.......+n)1(1 + 2 + 3 + 4 + ....... + n) - 1 ……………(i)
From the Series we know that the sum of series of natural numbers up to nnterms is:
(1+2+3+4+.......+n)=n(n+1)2(1 + 2 + 3 + 4 + ....... + n) = \dfrac{{n(n + 1)}}{2}
Put this value in (i) we get:

(1+2+3+4+.......+n)1 =n(n+1)21   (1 + 2 + 3 + 4 + ....... + n) - 1 \\\ = \dfrac{{n(n + 1)}}{2} - 1 \;

Take the common LCM and solve further:
On further solving we get:

n(n+1)21 =n2+n21 =n2+n22   \dfrac{{n(n + 1)}}{2} - 1 \\\ = \dfrac{{{n^2} + n}}{2} - 1 \\\ = \dfrac{{{n^2} + n - 2}}{2} \;

Hence, the value of 2P1+3P1+........+nP1^2{P_1}{ + ^3}{P_1} + ........{ + ^n}{P_1} is equal to n2+n22\dfrac{{{n^2} + n - 2}}{2}.
Therefore, the correct option is Option E i.en2+n22\dfrac{{{n^2} + n - 2}}{2}.
So, the correct answer is “OPTION E”.

Note : Remember the formula of basic permutation and methods to solve it step by step.
I.Always solve step by step, don’t do the solving part at once, otherwise it would give a chance of error.
II.Always remember the formula of sum of series like sum of natural numbers, sum of squares of natural numbers, etc.