Solveeit Logo

Question

Question: The value of \(2{\cot ^2}\left( {\dfrac{\pi }{6}} \right) + 4{\tan ^2}\left( {\dfrac{\pi }{6}} \righ...

The value of 2cot2(π6)+4tan2(π6)3cosecπ62{\cot ^2}\left( {\dfrac{\pi }{6}} \right) + 4{\tan ^2}\left( {\dfrac{\pi }{6}} \right) - 3cosec\dfrac{\pi }{6} is
1) 21){\text{ 2}}
2) 42){\text{ }}4
3)  433)\;\dfrac{4}{3}
4) 344){\text{ }}\dfrac{3}{4}

Explanation

Solution

Hint : We have to find the value of the given trigonometric expression 2cot2(π6)+4tan2(π6)3cosecπ62{\cot ^2}\left( {\dfrac{\pi }{6}} \right) + 4{\tan ^2}\left( {\dfrac{\pi }{6}} \right) - 3cosec\dfrac{\pi }{6} . We solve this question by substituting the respective values of the trigonometric functions in their respective expression . We already know the values of trigonometric functions for different values or different angles . So by substituting the values of trigonometric functions for the given value of angle we can evaluate the value of the given trigonometric expression 2cot2(π6)+4tan2(π6)3cosecπ62{\cot ^2}\left( {\dfrac{\pi }{6}} \right) + 4{\tan ^2}\left( {\dfrac{\pi }{6}} \right) - 3cosec\dfrac{\pi }{6}.

Complete step-by-step answer :
All the trigonometric functions are classified into two categories or types as either sine function or cosine function . All the functions which lie in the category of sine functions are sin , cosec and tan functions on the other hand the functions which lie in the category of cosine functions are cos , sec and cot functions . The trigonometric functions are classified into these two categories on the basis of their property which is stated as : when the value of angle is substituted by the negative value of the angle then we get the negative value for the functions in the sine family and a positive value for the functions in the cosine family .
Given :
We have to find the value of cot(π6),cosec(π6)\cot \left( {\dfrac{\pi }{6}} \right),cosec\left( {\dfrac{\pi }{6}} \right) and tan(π6)\tan \left( {\dfrac{\pi }{6}} \right)to solve the question .
From the trigonometric values of common angles, we know that π6=30\dfrac{\pi }{6} = {30^ \circ }.
Also we know that cot x =1tan xcot{\text{ }}x{\text{ }} = \dfrac{1}{{tan{\text{ }}x}}
so , we get
cot(π6)=1tan(π6)=133=33\cot \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{6}} \right)}} = \dfrac{1}{{\dfrac{{\sqrt 3 }}{3}}} = \dfrac{3}{{\sqrt 3 }}
And,
tan(π6)=33&cosec(π6)=1sin(π6)=112=2\tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{3}\& cosec\left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{{\sin \left( {\dfrac{\pi }{6}} \right)}} = \dfrac{1}{{\dfrac{1}{2}}} = 2
As , cosec x=1sin xcosec{\text{ }}x = \dfrac{1}{{sin{\text{ }}x}}
So there by substituting the values in the given question,
2cot2(π6)+4tan2(π6)3cosecπ62{\cot ^2}\left( {\dfrac{\pi }{6}} \right) + 4{\tan ^2}\left( {\dfrac{\pi }{6}} \right) - 3cosec\dfrac{\pi }{6}
Substituting the values from the trigonometric values,
=2×(33)2+4×(33)23×2=2 \times {\left( {\dfrac{3}{{\sqrt 3 }}} \right)^2} + 4 \times {\left( {\dfrac{{\sqrt 3 }}{3}} \right)^2} - 3 \times 2
=2×93+4×396=6+436=43= 2 \times \dfrac{9}{3} + 4 \times \dfrac{3}{9} - 6 = 6 + \dfrac{4}{3} - 6 = \dfrac{4}{3}
Thus , the value of 2cot2(π6)+4tan2(π6)3cosecπ62{\cot ^2}\left( {\dfrac{\pi }{6}} \right) + 4{\tan ^2}\left( {\dfrac{\pi }{6}} \right) - 3cosec\dfrac{\pi }{6} is 43\dfrac{4}{3}
Hence , the correct option is(3)(3).
So, the correct answer is “Option 3”.

Note : Whenever we are solving the trigonometric functions, we can simplify the equations by converting all the functions to sine and cosine. The various trigonometry formulas for the conversion are given as :
sin x = cos (90  x)sin{\text{ }}x{\text{ }} = {\text{ }}cos{\text{ }}\left( {90^\circ {\text{ }}-{\text{ }}x} \right)
cos x = sin (90  x)cos{\text{ }}x{\text{ }} = {\text{ }}sin{\text{ }}\left( {90^\circ {\text{ }}-{\text{ }}x} \right)
tan x = cot (90  x)tan{\text{ }}x{\text{ }} = {\text{ }}cot{\text{ }}\left( {90^\circ {\text{ }}-{\text{ }}x} \right)
cot x = tan (90  x)cot{\text{ }}x{\text{ }} = {\text{ }}tan{\text{ }}\left( {90^\circ {\text{ }}-{\text{ }}x} \right)
sec x = cosec (90  x)sec{\text{ }}x{\text{ }} = {\text{ }}cosec{\text{ }}\left( {90^\circ {\text{ }}-{\text{ }}x} \right)
cosec x = sec (90  x)cosec{\text{ }}x{\text{ }} = {\text{ }}sec{\text{ }}\left( {90^\circ {\text{ }}-{\text{ }}x} \right)