Solveeit Logo

Question

Question: The value of \( 1eV{\text{ato}}{{\text{m}}^{ - 1}} \) is: (A) \( 23.06{\text{ }}kcalmo{l^{ - 1}} \...

The value of 1eVatom11eV{\text{ato}}{{\text{m}}^{ - 1}} is:
(A) 23.06 kcalmol123.06{\text{ }}kcalmo{l^{ - 1}}
(B) 96.45 kJmol196.45{\text{ }}kJmo{l^{ - 1}}
(C) 1.602×1019 Jatom11.602 \times {10^{ - 19}}{\text{ }}Jato{m^{ - 1}}
(D) All of these

Explanation

Solution

Hint : 1eV1eV is defined as the energy gained by an electron when it has been accelerated by a potential difference of 11 volt. The work function of 1eV1eV mainly depends on the properties of the metal and is highest for platinum with 5.65eV5.65eV and lowest for caesium with 2.14eV2.14eV .

Complete Step By Step Answer:
We know, 1eV=1.602×1019J1eV = 1.602 \times {10^{ - 19}}J
1eVatom1=1.602×1019Jatom1\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ -19}}J{\text{ato}}{{\text{m}}^{ - 1}}
1eVatom1=1.602×1019×6.022×1023Jmol1\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ - 19}} \times 6.022 \times {10^{23}}J{\text{mo}}{{\text{l}}^{ - 1}}
1eVatom1=96.45kJmol1\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 96.45kJ{\text{mo}}{{\text{l}}^{ - 1}}
1eVatom1=96.454.18Kcalmol1\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = \dfrac{{96.45}}{{4.18}}Kcalmo{l^{ - 1}}
1eVatom1=23.06Kcalmol1\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 23.06Kcal{\text{mo}}{{\text{l}}^{ - 1}}
Therefore, from the above expressions we can conclude that option (d) All of these is the correct answer.

Note :
To convert 1eVatom11eVato{m^{ - 1}} to Kcal  Mol1Kcal\;Mo{l^{ - 1}} , first convert it to Jmol1Jmo{l^{ - 1}} using 1eV=1.602×1019Jatom11eV = 1.602 \times {10^{ - 19}}Jato{m^{ - 1}} and then multiply by Avogadro’s number 6.022×10236.022 \times {10^{23}} . Now to convert the KJKJ into Kcal  Mol1Kcal\;Mo{l^{ - 1}} , divide by 4.184.18 .