Solveeit Logo

Question

Question: The value of $17cot(cosec^{-1}\frac{5}{3}+tan^{-1}\frac{2}{3})$ is _____....

The value of 17cot(cosec153+tan123)17cot(cosec^{-1}\frac{5}{3}+tan^{-1}\frac{2}{3}) is _____.

Answer

6

Explanation

Solution

Let the given expression be EE. We have E=17cot(cosec153+tan123)E = 17cot(cosec^{-1}\frac{5}{3}+tan^{-1}\frac{2}{3}).

First, we evaluate the term inside the cotangent function. Let A=cosec153A = cosec^{-1}\frac{5}{3}. This implies cosecA=53cosec A = \frac{5}{3}. Since cosecA=1sinAcosec A = \frac{1}{sin A}, we have sinA=35sin A = \frac{3}{5}. We can convert sin135sin^{-1}\frac{3}{5} to tan1tan^{-1}. Consider a right triangle with the opposite side 3 and the hypotenuse 5. The adjacent side is 5232=259=16=4\sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4. Thus, tanA=oppositeadjacent=34tan A = \frac{opposite}{adjacent} = \frac{3}{4}. So, cosec153=sin135=tan134cosec^{-1}\frac{5}{3} = sin^{-1}\frac{3}{5} = tan^{-1}\frac{3}{4}.

Now, the expression inside the cotangent function is tan134+tan123tan^{-1}\frac{3}{4} + tan^{-1}\frac{2}{3}. We use the formula for the sum of two inverse tangents: tan1x+tan1y=tan1(x+y1xy)tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right), provided xy<1xy < 1. Here x=34x = \frac{3}{4} and y=23y = \frac{2}{3}. The product xy=34×23=612=12xy = \frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{1}{2}. Since xy=12<1xy = \frac{1}{2} < 1, we can use the formula: tan134+tan123=tan1(34+23134×23)=tan1(9+8121612)=tan1(171212)tan^{-1}\frac{3}{4} + tan^{-1}\frac{2}{3} = tan^{-1}\left(\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4}\times\frac{2}{3}}\right) = tan^{-1}\left(\frac{\frac{9+8}{12}}{1-\frac{6}{12}}\right) = tan^{-1}\left(\frac{\frac{17}{12}}{\frac{1}{2}}\right). Simplifying the fraction: 171212=1712×2=176\frac{\frac{17}{12}}{\frac{1}{2}} = \frac{17}{12} \times 2 = \frac{17}{6}. So, cosec153+tan123=tan1176cosec^{-1}\frac{5}{3}+tan^{-1}\frac{2}{3} = tan^{-1}\frac{17}{6}.

The expression EE becomes 17cot(tan1176)17cot(tan^{-1}\frac{17}{6}). We know that cot(θ)=1tan(θ)cot(\theta) = \frac{1}{tan(\theta)}. So, cot(tan1x)=1tan(tan1x)=1xcot(tan^{-1}x) = \frac{1}{tan(tan^{-1}x)} = \frac{1}{x} for x0x \neq 0. Here x=176x = \frac{17}{6}, which is not zero. cot(tan1176)=1176=617cot(tan^{-1}\frac{17}{6}) = \frac{1}{\frac{17}{6}} = \frac{6}{17}.

Finally, we substitute this value back into the expression for EE: E=17×cot(tan1176)=17×617E = 17 \times cot(tan^{-1}\frac{17}{6}) = 17 \times \frac{6}{17}. E=6E = 6.