Solveeit Logo

Question

Mathematics Question on Combinations

The value of 15C1+2.15C23.15C3+-{ }^{15} C _{1}+2 .{ }^{15} C _{2}-3 .{ }^{15} C _{3}+\ldots 15.15C15+14C1+14C3+14C5+.+14C11-15 .{ }^{15} C _{15}+{ }^{14} C _{1}+{ }^{14} C _{3}+{ }^{14} C _{5}+\ldots .+{ }^{14} C _{11} is

A

21612^{16}-1

B

213142^{13}-14

C

2142^{14}

D

213132^{13}-13

Answer

213142^{13}-14

Explanation

Solution

(15C1+215C23.15C3+15.15C15)\left(-{ }^{15} C _{1}+2{ }^{15} C _{2}-3 .{ }^{15} C _{3}+\ldots -15 .{ }^{15} C _{15}\right) +(14C1+14C3+.+14C11)+\left({ }^{14} C _{1}+{ }^{14} C _{3}+\ldots .+{ }^{14} C _{11}\right) =r=115(1)rr15Cr+(14C1+14C3++14C11+14C13)14C3=\displaystyle\sum_{ r =1}^{15}(-1)^{ r } \cdot r ^{15} C _{ r }+\left({ }^{14} C _{1}+{ }^{14} C _{3}+\ldots+{ }^{14} C _{11}+{ }^{14} C _{13}\right)-{ }^{14} C _{3} =r=115(1)r1514Cr1+21314=\displaystyle\sum_{ r =1}^{15}(-1)^{ r } 15 \cdot{ }^{14} C _{ r -1}+2^{13}-14 =15(14C0+14C114C14)+21314=15\left(-{ }^{14} C _{0}+{ }^{14} C _{1} \ldots-{ }^{14} C _{14}\right)+2^{13}-14 =21314=2^{13}-14