Solveeit Logo

Question

Mathematics Question on Surds and Indices

The value of (13 + 23 + 33 + ........+153) - (1+2+3+.........+15) is

A

14280

B

14400

C

12280

D

13280

Answer

14280

Explanation

Solution

Let's Assume the sum of nn consecutive natural number cubes be [n(n+1)2]2[\frac{n(n + 1)}{2}]^2

The sum of nn consecutive natural numbers be n(n+1)2\frac{n(n + 1)}{2}

The Expression given = (13+23+33+.........+153)(1^3 + 2^3 + 3^3 + ......... + 15^3) - (1+2+3+.........+15)(1 + 2 + 3 + ......... + 15)

= From the above = [15(15+1)2]215×162[ \frac{15(15 + 1)}{2}]^2 - \frac{15 × 16}{2}

= [15×162]215×162[\frac{15 × 16}{2}]^2 - \frac{15 × 16}{2}

= (120)2(120)^2 - 120

= 14400 - 120

= 14280

The correct option is (A): 14280