Solveeit Logo

Question

Question: The value of \(^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}\) is equal to \(\begin{aligned} & a)462 \\\ ...

The value of 10C4+10C5^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}} is equal to
a)462 b)466 c)469 d)465 \begin{aligned} & a)462 \\\ & b)466 \\\ & c)469 \\\ & d)465 \\\ \end{aligned}

Explanation

Solution

Now we know that nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!} where n! = n × (n – 1) × (n – 2) × …. 3 × 2 × 1.
Hence using this we will find the value of 10C4^{10}{{C}_{4}} and 10C5^{10}{{C}_{5}} . Now we will add the following values. To find the value of 10C4+10C5^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}} .

Complete step by step answer:
Now first let us understand the meaning of the term nCr^{n}{{C}_{r}} . nCr^{n}{{C}_{r}} is formula which gives us number of ways to select r objects from n objects. For example we have 3 balls and we want to select 2 balls out of it. Then the number of ways in which we can select 2 balls is given by 3C2^{3}{{C}_{2}} .
Now let us understand how to calculate the value of nCr^{n}{{C}_{r}} .
To do so we must first understand the term factorial.
Now n factorial is represented as n! and the value of n! is given by n × (n – 1) × (n – 2) × …. 3 × 2 × 1.
For example 4! = 4 × 3 × 2 × 1 = 24.
Now the value of nCr^{n}{{C}_{r}} is given by nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!} .
Now let us consider 10C4^{10}{{C}_{4}}
10C4=10!(104)!4! 10C4=10!6!4! 10C4=10×9×8×7×6!6!4! 10C4=10×9×8×74×3×2 \begin{aligned} & ^{10}{{C}_{4}}=\dfrac{10!}{\left( 10-4 \right)!4!} \\\ & {{\Rightarrow }^{10}}{{C}_{4}}=\dfrac{10!}{6!4!} \\\ & {{\Rightarrow }^{10}}{{C}_{4}}=\dfrac{10\times 9\times 8\times 7\times 6!}{6!4!} \\\ & {{\Rightarrow }^{10}}{{C}_{4}}=\dfrac{10\times 9\times 8\times 7}{4\times 3\times 2} \\\ \end{aligned}
10C4=10×3×7=210 10C4=210............................(1) \begin{aligned} & {{\Rightarrow }^{10}}{{C}_{4}}=10\times 3\times 7=210 \\\ & {{\therefore }^{10}}{{C}_{4}}=210............................\left( 1 \right) \\\ \end{aligned}
Now consider the term 10C5^{10}{{C}_{5}}

& ^{10}{{C}_{5}}=\dfrac{10!}{\left( 10-5 \right)!5!} \\\ & {{\Rightarrow }^{10}}{{C}_{5}}=\dfrac{10\times 9\times 8\times 7\times 6\times 5!}{5!5!} \\\ & {{\Rightarrow }^{10}}{{C}_{5}}=\dfrac{10\times 9\times 8\times 7\times 6}{5\times 4\times 3\times 2\times 1} \\\ & {{\Rightarrow }^{10}}{{C}_{5}}=2\times 3\times 7\times 6 \\\ & {{\therefore }^{10}}{{C}_{5}}=252......................\left( 2 \right) \\\ \end{aligned}$$ Now adding equation (1) and equation (2) we get, $\begin{aligned} & ^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}=252+210 \\\ & {{\therefore }^{10}}{{C}_{4}}{{+}^{10}}{{C}_{5}}=462 \\\ \end{aligned}$ Hence the value of $^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}$ is 462. **So, the correct answer is “Option a”.** **Note:** Now note that we have a property which says $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r+1}}{{=}^{n+1}}{{C}_{r+1}}$ hence using this we can say that $^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}{{=}^{11}}{{C}_{5}}$ and hence solve the equation easily.