Solveeit Logo

Question

Mathematics Question on Combinations

The value of 10C1+10C2+10C3+....+10C9^{10}C_1+^{10}C_2+^{10}C_3+....+^{10}C_9 is

A

2102^{10}

B

2112^{11}

C

21022^{10}-2

D

21012^{10} -1

Answer

21022^{10}-2

Explanation

Solution

Since, (1+x)n=nC0+nC1x+nC2x2+...+nCnxn\left(1+x\right)^{n }= ^{n}C_{0}+^{n}C_{1}x+^{n}C_{2} x^{2} +...+^{n}C_{n} x^{n}
Put x = 1 and n = 10, we get
210=10C0+10C1+10C2+...+10C102^{10} = ^{10}C_{0}+^{10}C_{1}+^{10}C_{2}+...+^{10}C_{10}
210=1+10C1+10C2+...+10C9+12^{10} = 1+^{10}C_{1}+^{10}C_{2} +...+^{10}C_{9}+1
2102=10C1+10C2+...+10C92^{10} - 2 = ^{10}C_{1}+^{10}C_{2} +...+^{10}C_{9}