Solveeit Logo

Question

Question: The value of \[1{}^n{C_0} + 3{}^n{C_1} + 5{}^n{C_2} + 7{}^n{C_3} + ....................................

The value of 1nC0+3nC1+5nC2+7nC3+......................................+(2n+1)nCn1{}^n{C_0} + 3{}^n{C_1} + 5{}^n{C_2} + 7{}^n{C_3} + ...................................... + \left( {2n + 1} \right){}^n{C_n} is equal to
A. 2n{2^n}
B. 2n+n2n1{2^n} + n{2^{n - 1}}
C. 2n(n+1){2^n}\left( {n + 1} \right)
D. none of these

Explanation

Solution

Hint: First of all, consider the expansion of (1+x2)n{\left( {1 + {x^2}} \right)^n} by using binomial theorem. Then multiply both sides with xx and differentiate w.r.t xx. Then substitute xx is equal to 1 to obtain the required answer.

Complete step-by-step answer:
As we know that
(1+x2)n=1nC0+nC1x2+nC2x4+nC3x6+.................................................+nCnx2n{\left( {1 + {x^2}} \right)^n} = 1{}^n{C_0} + {}^n{C_1}{x^2} + {}^n{C_2}{x^4} + {}^n{C_3}{x^6} + ................................................. + {}^n{C_n}{x^{2n}}
Multiplying both sides with xx, we get

x(1+x2)n=x(1nC0+nC1x2+nC2x4+nC3x6+.................................................+nCnx2n) x(1+x2)n=xnC0+nC1x3+nC2x5+nC3x7+.................................................+nCnx2n+1  \Rightarrow x{\left( {1 + {x^2}} \right)^n} = x\left( {1{}^n{C_0} + {}^n{C_1}{x^2} + {}^n{C_2}{x^4} + {}^n{C_3}{x^6} + ................................................. + {}^n{C_n}{x^{2n}}} \right) \\\ \Rightarrow x{\left( {1 + {x^2}} \right)^n} = x{}^n{C_0} + {}^n{C_1}{x^3} + {}^n{C_2}{x^5} + {}^n{C_3}{x^7} + ................................................. + {}^n{C_n}{x^{2n + 1}} \\\

Differentiating both sides with respect to xx, we get
ddx[x(1+x2)n]=ddx(xnC0+nC1x3+nC2x5+nC3x7+.................................................+nCnx2n+1)\dfrac{d}{{dx}}\left[ {x{{\left( {1 + {x^2}} \right)}^n}} \right] = \dfrac{d}{{dx}}\left( {x{}^n{C_0} + {}^n{C_1}{x^3} + {}^n{C_2}{x^5} + {}^n{C_3}{x^7} + ................................................. + {}^n{C_n}{x^{2n + 1}}} \right)
We know that the product rule states that if f(x)f\left( x \right) and g(x)g\left( x \right) are both differentiable, then ddx[f(x)g(x)]=f(x)ddx[g(x)]+g(x)ddx[f(x)]\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right].

xddx(1+x2)n+(1+x2)nddx(xnC0)=ddx(x)+ddx(nC1x3)+ddx(nC2x5)+ddx(nC3x7)...........+ddx(nCnx2n+1) x[n(1+x2)n1(2x)]+(1+x2)n(1)=1nC0+3nC1x2+5nC2x4+7nC3x6+..................+(2n+1)nCnx2n  \Rightarrow x\dfrac{d}{{dx}}{\left( {1 + {x^2}} \right)^n} + {\left( {1 + {x^2}} \right)^n}\dfrac{d}{{dx}}\left( {x{}^n{C_0}} \right) = \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {{}^n{C_1}{x^3}} \right) + \dfrac{d}{{dx}}\left( {{}^n{C_2}{x^5}} \right) + \dfrac{d}{{dx}}\left( {{}^n{C_3}{x^7}} \right)........... + \dfrac{d}{{dx}}\left( {{}^n{C_n}{x^{2n + 1}}} \right) \\\ \Rightarrow x\left[ {n{{\left( {1 + {x^2}} \right)}^{n - 1}}\left( {2x} \right)} \right] + {\left( {1 + {x^2}} \right)^n}\left( 1 \right) = 1{}^n{C_0} + 3{}^n{C_1}{x^2} + 5{}^n{C_2}{x^4} + 7{}^n{C_3}{x^6} + .................. + \left( {2n + 1} \right){}^n{C_n}{x^{2n}} \\\

Now, put x=1x = 1

1[n(1+12)n1(2(1))]+(1+12)n=1nC0+3nC1(12)+5nC2(14)+7nC3(16)+....................+(2n+1)nCn(1)2n 2n(2n1)+2n=1nC0+3nC1+5nC2+7nC3+....................+(2n+1)nCn 2nn+2n=1nC0+3nC1+5nC2+7nC3+....................+(2n+1)nCn 1nC0+3nC1+5nC2+7nC3+....................+(2n+1)nCn=2n(n+1)  \Rightarrow 1\left[ {n{{\left( {1 + {1^2}} \right)}^{n - 1}}\left( {2\left( 1 \right)} \right)} \right] + {\left( {1 + {1^2}} \right)^n} = 1{}^n{C_0} + 3{}^n{C_1}\left( {{1^2}} \right) + 5{}^n{C_2}\left( {{1^4}} \right) + 7{}^n{C_3}\left( {{1^6}} \right) + .................... + \left( {2n + 1} \right){}^n{C_n}{\left( 1 \right)^{2n}} \\\ \Rightarrow 2n\left( {{2^{n - 1}}} \right) + {2^n} = 1{}^n{C_0} + 3{}^n{C_1} + 5{}^n{C_2} + 7{}^n{C_3} + .................... + \left( {2n + 1} \right){}^n{C_n} \\\ \Rightarrow {2^n}n + {2^n} = 1{}^n{C_0} + 3{}^n{C_1} + 5{}^n{C_2} + 7{}^n{C_3} + .................... + \left( {2n + 1} \right){}^n{C_n} \\\ \therefore 1{}^n{C_0} + 3{}^n{C_1} + 5{}^n{C_2} + 7{}^n{C_3} + .................... + \left( {2n + 1} \right){}^n{C_n} = {2^n}\left( {n + 1} \right) \\\

Thus, the correct option is C. 2n(n+1){2^n}\left( {n + 1} \right)

Note: The product rule states that if f(x)f\left( x \right) and g(x)g\left( x \right) are both differentiable, then ddx[f(x)g(x)]=f(x)ddx[g(x)]+g(x)ddx[f(x)]\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]. Remember this problem as a formula i.e., 1nC0+3nC1+5nC2+7nC3+....................+(2n+1)nCn=2n(n+1)1{}^n{C_0} + 3{}^n{C_1} + 5{}^n{C_2} + 7{}^n{C_3} + .................... + \left( {2n + 1} \right){}^n{C_n} = {2^n}\left( {n + 1} \right) to solve further complicated problems easily.