Solveeit Logo

Question

Question: The value of \[1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!\] is A \[\lef...

The value of 1+11!+22!+33!++nn!1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n! is
A (n+1)!+1\left( {n + 1} \right)! + 1
B (n1)!+1\left( {n - 1} \right)! + 1
C (n+1)!1\left( {n + 1} \right)! – 1
D (n+1)!\left( {n + 1} \right)!

Explanation

Solution

- Hint: In this problem, we first need to convert the given expression as a sum of n+1n + 1 terms by adding and subtracting 1. Next, use the property of the factorial to simplify the obtained equation.

Complete step-by-step solution -
Consider the given expression 1+11!+22!+33!++nn!1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n! aspp.
P=1+11!+22!+33!++nn!P = 1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n!

Now, rewrite the above expression as the sum of n+1n + 1 terms as shown below.

P=1+(21)1!+(31)2!++(n+11)n! P=1+21!11!+32!12!+(n+1)n!n! P=1+2!1!+3!2!+(n+1)!n! P=1+(n+1)!1 P=(n+1)!  \,\,\,\,\,\,P = 1 + \left( {2 - 1} \right)1! + \left( {3 - 1} \right)2! + \ldots \ldots + \left( {n + 1 - 1} \right)n! \\\ \Rightarrow P = 1 + 2 \cdot 1! - 1 \cdot 1! + 3 \cdot 2! - 1 \cdot 2! \ldots \ldots + \left( {n + 1} \right)n! - n! \\\ \Rightarrow P = 1 + 2! - 1! + 3! - 2! \ldots \ldots + \left( {n + 1} \right)! - n! \\\ \Rightarrow P = 1 + \left( {n + 1} \right)! - 1 \\\ \Rightarrow P = \left( {n + 1} \right)! \\\

Thus, the value of 1+11!+22!+33!++nn!1 + 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots \ldots + n \cdot n! is (n+1)!\left( {n + 1} \right)!, hence, the option (D) is the correct answer.

Note: The factorial of a number nn is a product of the natural numbers being nn along withnn. For example: 5!=5×4×3×2×15! = 5 \times 4 \times 3 \times 2 \times 1. The factorial of a number cannot be negative. The factorial of 0 is 1.