Solveeit Logo

Question

Mathematics Question on integral

The value of 01tan1(2x1)(1+xx2)dx∫^1_0tan^{-1}\frac{(2x-1)}{(1+x-x^2)}dx is

A

1

B

0

C

-1

D

π4\frac{π}{4}

Answer

0

Explanation

Solution

The correct answer is B:0
Let I=01tan1(2x1)(1+xx2)dxI=∫^1_0tan^{-1}\frac{(2x-1)}{(1+x-x^2)}dx
I=01tan1(x(1x)(1+x(1x))dx⇒I=∫^1_0tan^{-1}\frac{(x-(1-x)}{(1+x(1-x))}dx
I=01[tan1xtan1(1x)]dx...(1)⇒I=∫^1_0[tan^{-1}x-tan^{-1}(1-x)]dx...(1)
I=01[tan1(1x)tan1(11+x)]dx⇒I=∫^1_0[tan^{-1}(1-x)-tan^{-1}(1-1+x)]dx
I=01[tan1(1x)tan1(x)]dx⇒I=∫^1_0[tan^{-1}(1-x)-tan^{-1}(x)]dx
I=01[tan1(1x)tan1(x)]dx...(2)⇒I=∫^1_0[tan^{-1}(1-x)-tan^{-1}(x)]dx...(2)
Adding(1)and(2),we obtain
2I=01(tan1x+tan1(1x)tan1(1x)tan1x)dx2I=∫^1_0(tan^{-1}x+tan^{-1}(1-x)-tan^{-1}(1-x)-tan^{-1}x)dx
2I=0⇒2I=0
I=0⇒I=0
Hence,the correct Answer is B.