Question
Mathematics Question on integral
The value of ∫01tan−1(1+x−x2)(2x−1)dx is
A
1
B
0
C
-1
D
4π
Answer
0
Explanation
Solution
The correct answer is B:0
Let I=∫01tan−1(1+x−x2)(2x−1)dx
⇒I=∫01tan−1(1+x(1−x))(x−(1−x)dx
⇒I=∫01[tan−1x−tan−1(1−x)]dx...(1)
⇒I=∫01[tan−1(1−x)−tan−1(1−1+x)]dx
⇒I=∫01[tan−1(1−x)−tan−1(x)]dx
⇒I=∫01[tan−1(1−x)−tan−1(x)]dx...(2)
Adding(1)and(2),we obtain
2I=∫01(tan−1x+tan−1(1−x)−tan−1(1−x)−tan−1x)dx
⇒2I=0
⇒I=0
Hence,the correct Answer is B.