Solveeit Logo

Question

Question: The value of \((0.05)^{\log_{\sqrt{20}} ⥂ (0.1 + 0.01 + 0.001 + ......)}\) is...

The value of (0.05)log20(0.1+0.01+0.001+......)(0.05)^{\log_{\sqrt{20}} ⥂ (0.1 + 0.01 + 0.001 + ......)} is

A

81

B

181\frac{1}{81}

C

20

D

120\frac{1}{20}

Answer

81

Explanation

Solution

(0.05)log20(0.1+0.01+......)=(120)2log20(0.110.1)(0.05)^{\log_{\sqrt{20}}(0.1 + 0.01 + ......)} = \left( \frac{1}{20} \right)^{2\log_{20}\left( \frac{0.1}{1 - 0.1} \right)}

=202log20(1/9)=202log209=20log2092=92=81= 20^{- 2\log_{20}(1/9)} = 20^{2\log_{20}9} = 20^{\log_{20}9^{2}} = 9^{2} = 81.