Solveeit Logo

Question

Question: The value \[\cot x + \cot \left( {{{60}^ \circ } + x} \right) + \cot \left( {{{120}^ \circ } + x} \r...

The value cotx+cot(60+x)+cot(120+x)\cot x + \cot \left( {{{60}^ \circ } + x} \right) + \cot \left( {{{120}^ \circ } + x} \right) is equal to:
A. cot3x\cot 3x
B. tan3x\tan 3x
C. 3tan3x3\tan 3x
D. 39tan2x3tanxtan3x\dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}

Explanation

Solution

To solve this question, first we have to write the given expression replacing cotx\cot x with the equivalent terms of tanx\tan x. Simplify the equation by substituting the angle values, taking the L.C.M. and writing the formulas of the multiple angles until the desired solution is obtained.

Complete step-by-step solution:
Given expression:
cotx+cot(60+x)+cot(120+x)\cot x + \cot \left( {{{60}^ \circ } + x} \right) + \cot \left( {{{120}^ \circ } + x} \right)
Now expanding the terms of the simple expressions, we get;
cotx+cot60cotx1cot60+cotx+cot120cotx1cot120+cotx\Rightarrow \cot x + \dfrac{{\cot 60\cot x - 1}}{{\cot 60 + \cot x}} + \dfrac{{\cot 120\cot x - 1}}{{\cot 120 + \cot x}}
Replacing the trigonometric value of cotx\cot x in terms of tanx\tan x, we get;
1tanx+1tan(60+x)+1tan(120+x)\Rightarrow \dfrac{1}{{\tan x}} + \dfrac{1}{{\tan \left( {{{60}^ \circ } + x} \right)}} + \dfrac{1}{{\tan \left( {{{120}^ \circ } + x} \right)}}
We have tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
By expanding the obtained equation by substituting it in the above formula, we get;
1tanx+1tan60+tanx1tan60tanx+1tan120+tanx1tan120tanx\Rightarrow \dfrac{1}{{\tan x}} + \dfrac{1}{{\dfrac{{\tan {{60}^ \circ } + \tan x}}{{1 - \tan {{60}^ \circ }\tan x}}}} + \dfrac{1}{{\dfrac{{\tan {{120}^ \circ } + \tan x}}{{1 - \tan {{120}^ \circ }\tan x}}}}
We have the standard values of tan60\tan {60^ \circ } and tan120\tan {120^ \circ }.
tan60=3\tan {60^ \circ } = \sqrt 3
tan120=3\tan {120^ \circ } = - \sqrt 3
Substituting these values in the above obtained equation, we get;
1tanx+13+tanx13tanx+13+tanx1(3)tanx\Rightarrow \dfrac{1}{{\tan x}} + \dfrac{1}{{\dfrac{{\sqrt 3 + \tan x}}{{1 - \sqrt 3 \tan x}}}} + \dfrac{1}{{\dfrac{{ - \sqrt 3 + \tan x}}{{1 - \left( { - \sqrt 3 } \right)\tan x}}}}
Now, simplifying the above equation by sending the denominator of the denominator to the numerator through division, we get;
1tanx+13tanxtanx+3+1+3tanxtanx3\Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{1 - \sqrt 3 \tan x}}{{\tan x + \sqrt 3 }} + \dfrac{{1 + \sqrt 3 \tan x}}{{\tan x - \sqrt 3 }}
Now, taking the L.C.M. of the two denominators and getting the numerators in the same form by multiplying the denominators of the other fraction, we get;
1tanx+(13tanx)(tanx3)+(1+3tanx)(tanx+3)(tanx+3)(tanx3)\Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{\left( {1 - \sqrt 3 \tan x} \right)\left( {\tan x - \sqrt 3 } \right) + \left( {1 + \sqrt 3 \tan x} \right)\left( {\tan x + \sqrt 3 } \right)}}{{\left( {\tan x + \sqrt 3 } \right)\left( {\tan x - \sqrt 3 } \right)}}
Now, multiplying the denominators as well as the numerators in respect to the given terms, we get;
1tanx+tanx3tan2x3+3tanx+tanx+3tan2x+3+3tanxtan2x3\Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{\tan x - \sqrt 3 {{\tan }^2}x - \sqrt 3 + 3\tan x + \tan x + \sqrt 3 {{\tan }^2}x + \sqrt 3 + 3\tan x}}{{{{\tan }^2}x - 3}}
Simplifying the terms using simple algebraic expressions and methods, we get;
1tanx+2tanx+6tanxtan2x3\Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{2\tan x + 6\tan x}}{{{{\tan }^2}x - 3}}
Adding the numerator with like terms, we get;
1tanx+8tanxtan2x3\Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{8\tan x}}{{{{\tan }^2}x - 3}}
Now taking the L.C.M. of the denominators and multiplying the numerators with the opposite denominator, we get;
tan2x3+8tan2xtan3x3tanx\Rightarrow \dfrac{{{{\tan }^2}x - 3 + 8{{\tan }^2}x}}{{{{\tan }^3}x - 3\tan x}}
Simplifying the numerator, we get;
9tan2x3tan3x3tanx\Rightarrow \dfrac{{9{{\tan }^2}x - 3}}{{{{\tan }^3}x - 3\tan x}}
Taking the negative sign out from both the numerator and the denominator, we get;
39tan2x3tanxtan3x\Rightarrow \dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}
Taking the common terms in the numerator and denominator out, we get;
3(13tan2x)(3tanxtan2x)\Rightarrow \dfrac{{ - 3\left( {1 - 3{{\tan }^2}x} \right)}}{{ - \left( {3\tan x - {{\tan }^2}x} \right)}}
Cancelling out the negative sign, we get;
3(13tan2x)(3tanxtan2x)\Rightarrow \dfrac{{3\left( {1 - 3{{\tan }^2}x} \right)}}{{\left( {3\tan x - {{\tan }^2}x} \right)}}
Bringing the numerator trigonometric part to the denominator for better access, we get;
3(3tanxtan2x13tan2x)\Rightarrow \dfrac{3}{{\left( {\dfrac{{3\tan x - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}} \right)}}
Now, the denominator is in the form of tan3x\tan 3x
tan3x=3tanxtan2x13tan2x\tan 3x = \dfrac{{3\tan x - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}
Substituting the denominator with the above expression, we get;
3tan3x\Rightarrow \dfrac{3}{{\tan 3x}}
Now, substituting the tanx\tan x in terms of cotx\cot x, we get;
3cot3x\Rightarrow 3\cot 3x
Since we do not have the final answer in the options, we have the mid value answer which is,
39tan2x3tanxtan3x\Rightarrow \dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}
Therefore, for the given expression, we have;
cotx+cot(60+x)+cot(120+x)=39tan2x3tanxtan3x\cot x + \cot \left( {{{60}^ \circ } + x} \right) + \cot \left( {{{120}^ \circ } + x} \right) = \dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}

\therefore The correct option is D.

Note: We have to know that trigonometry is a branch of mathematics that studies relationships between side lengths and angles of triangles. The Greeks focused on the calculations of chords, while mathematics in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such a sine.