Solveeit Logo

Question

Mathematics Question on Definite Integral

The value 90910xx+1dx9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx, where t\left\lfloor t \right\rfloor denotes the greatest integer less than or equal to tt, is ________.

Answer

Solution: To evaluate 0910xx+1dx\int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx, we analyze the function 10xx+1\frac{10x}{x+1} and find the intervals where it takes integer values.

Solve for values of xx where 10xx+1=k\frac{10x}{x+1} = k (where kk is an integer):

  1. 10xx+1=1x=19\frac{10x}{x+1} = 1 \Rightarrow x = \frac{1}{9}
  2. 10xx+1=4x=23\frac{10x}{x+1} = 4 \Rightarrow x = \frac{2}{3}
  3. 10xx+1=9x=9\frac{10x}{x+1} = 9 \Rightarrow x = 9

Thus, we break the integral into parts:

I=9(01/90dx+1/92/31dx+2/392dx)I = 9 \left( \int_{0}^{1/9} 0 \, dx + \int_{1/9}^{2/3} 1 \, dx + \int_{2/3}^{9} 2 \, dx \right)

Calculate each integral:

=9(0+1/92/31dx+2/392dx)=155= 9 \left( 0 + \int_{1/9}^{2/3} 1 \, dx + \int_{2/3}^{9} 2 \, dx \right) = 155