Solveeit Logo

Question

Question: The value \[{(0.16)^{{{\log }_{2.5}}\\{ \dfrac{1}{3} + \dfrac{1}{{{3^2}}} + .....\\} }}\] is a. 2 ...

The value (0.16)log2.513+132+.....{(0.16)^{{{\log }_{2.5}}\\{ \dfrac{1}{3} + \dfrac{1}{{{3^2}}} + .....\\} }} is
a. 2
b. 4
c. 6
d. 8

Explanation

Solution

Start by solving each step one by one. First, we solve the infinite GP by using the formula sum of a G.P which is =a1r = \dfrac{a}{{1 - r}}, then we’ll proceed toward the logarithm function, we’ll simplify it using the properties of the logarithm alog(x) = log(xa){\text{alog(x) = log(}}{{\text{x}}^{\text{a}}}{\text{)}} and alogab = b{{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{b}}}}{\text{ = b}}, to get the required answer.

Complete step by step Answer:

We have the sum of the infinite GP, where a is the initial term and r is the common ratio=a1 - r = \dfrac{{\text{a}}}{{{\text{1 - r}}}}given that r<1|r| < 1 .
So, we have, 13+132+.......\dfrac{1}{3} + \dfrac{1}{{{3^2}}} + .......
The common ratio(r) will the ratio any term with its preceding term
i.e. r=13213r = \dfrac{{\dfrac{1}{{{3^2}}}}}{{\dfrac{1}{3}}}
r=13\therefore r = \dfrac{1}{3}
So we have an infinite G.P. where a is13\dfrac{1}{3} and r is 13\dfrac{1}{3}
Hence substituting the value of a and r in the formula of the sum of infinite GP which is =a1r = \dfrac{a}{{1 - r}}, we get,
=13(113)= \dfrac{{\dfrac{1}{3}}}{{(1 - \dfrac{1}{3})}}
=1323= \dfrac{{\dfrac{1}{3}}}{{\dfrac{2}{3}}}
=12= \dfrac{1}{2}
We know that 2.5 =52 = \dfrac{5}{2}and 0.16=4250.16 = \dfrac{4}{{25}}
We get, (0.16)log2.513+132+.....{(0.16)^{{{\log }_{2.5}}\\{ \dfrac{1}{3} + \dfrac{1}{{{3^2}}} + .....\\} }}
= (425)log5212{(\dfrac{4}{{25}})^{{{\log }_{\dfrac{5}{2}}}\dfrac{1}{2}}}
We can write 12=21\dfrac{1}{2} = {2^{ - 1}}
We know that, (52)2=425{(\dfrac{5}{2})^{ - 2}} = {\dfrac{4}{{25}}^{}}
now, (425)log5212=(52)2log5212{(\dfrac{4}{{25}})^{{{\log }_{\dfrac{5}{2}}}\dfrac{1}{2}}} = {(\dfrac{5}{2})^{ - 2{{\log }_{\dfrac{5}{2}}}\dfrac{1}{2}}}
Now we use the fact alog(x) = log(xa){\text{alog(x) = log(}}{{\text{x}}^{\text{a}}}{\text{)}}, we get,
=(52)log52(12)2= {(\dfrac{5}{2})^{{{\log }_{\dfrac{5}{2}}}{{(\dfrac{1}{2})}^{ - 2}}}}
=(52)log524= {(\dfrac{5}{2})^{{{\log }_{\dfrac{5}{2}}}4}}
As, alogab = b{{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{b}}}}{\text{ = b}}we see,(52)log524=4{(\dfrac{5}{2})^{{{\log }_{\dfrac{5}{2}}}4}} = 4, which is an option (b)

Note: Always first simplify the question, we can take different parts of the question. The formulas we had used in the problem are, alogab = b{{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{b}}}}{\text{ = b}}, alog(x) = log(xa){\text{alog(x) = log(}}{{\text{x}}^{\text{a}}}{\text{)}}and the sum of the infinite GP=a1 - r = \dfrac{{\text{a}}}{{{\text{1 - r}}}}.
Here so we used the sum of G.P. S=a1rS = \dfrac{a}{{1 - r}}asr=13r = \dfrac{1}{3} but ifr1\left| r \right| \geqslant 1 then we would use the formula for sum of G.P. asSn=a(rn1)r1{S_n} = \dfrac{{a({r^n} - 1)}}{{r - 1}}