Solveeit Logo

Question

Question: The unit vector which is orthogonal to the vector $5\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar w...

The unit vector which is orthogonal to the vector 5i^+2j^+6k^5\hat{i} + 2\hat{j} + 6\hat{k} and is coplanar with the vectors 2i^+j^+k^2\hat{i} + \hat{j} + \hat{k} and i^j^+k^\hat{i} - \hat{j} + \hat{k} is

A

2i^6j^+k^41\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}

B

2i^5j^29\frac{2\hat{i} - 5\hat{j}}{\sqrt{29}}

C

3j^+k^10\frac{-3\hat{j} + \hat{k}}{\sqrt{10}}

D

2i^8j^+k^69\frac{2\hat{i} - 8\hat{j} + \hat{k}}{69}

Answer

3j^+k^10\frac{-3\hat{j} + \hat{k}}{\sqrt{10}}

Explanation

Solution

Solution:

Let the required unit vector be

u=α(2,1,1)+β(1,1,1)=(2α+β,  αβ,  α+β).\vec{u} = \alpha(2,1,1) + \beta(1,-1,1) = (2\alpha+\beta,\;\alpha-\beta,\;\alpha+\beta).

The condition that u\vec{u} is orthogonal to (5,2,6)(5,2,6) gives:

(2α+β)5+(αβ)2+(α+β)6=18α+9β=0.(2\alpha+\beta)5 + (\alpha-\beta)2 + (\alpha+\beta)6 = 18\alpha+9\beta=0.

This simplifies to:

2α+β=0β=2α.2\alpha+\beta=0 \quad\Longrightarrow\quad \beta=-2\alpha.

Substitute β=2α\beta=-2\alpha into u\vec{u}:

u=(2α2α,  α(2α),  α+(2α))=(0,  3α,  α).\vec{u} = (2\alpha-2\alpha,\; \alpha-(-2\alpha),\; \alpha+(-2\alpha)) = (0,\; 3\alpha,\; -\alpha).

To be a unit vector, choose α|\alpha| such that:

u=02+(3α)2+(α)2=9α2+α2=10α2=α10=1.\|\vec{u}\| = \sqrt{0^2+(3\alpha)^2+(-\alpha)^2} = \sqrt{9\alpha^2+\alpha^2} = \sqrt{10\alpha^2} = |\alpha|\sqrt{10}=1.

Thus, α=110|\alpha|=\frac{1}{\sqrt{10}}. Choosing α=110\alpha=\frac{1}{\sqrt{10}} gives:

u=(0,310,110).\vec{u}=\left(0,\frac{3}{\sqrt{10}},\frac{-1}{\sqrt{10}}\right).

Multiplying by 1-1 (which is acceptable as the unit vector direction is unique up to sign) yields:

u=(0,310,110)=3j^+k^10.\vec{u}=\left(0,\frac{-3}{\sqrt{10}},\frac{1}{\sqrt{10}}\right)=\frac{-3\hat{j}+\hat{k}}{\sqrt{10}}.