Solveeit Logo

Question

Mathematics Question on Vector Algebra

The unit vector which is orthogonal to the vector 3i^+2j^+6k^3\widehat{i} + 2\widehat{j} + 6\widehat{k} and is coplanar with the vectors 2i^+j^+k^ 2\widehat{i} + \widehat{j} + \widehat{k} and i^+j^+k^\widehat{i} + \widehat{j} + \widehat{k} is

A

2i^6j^+k^41\frac{2\widehat{i}\, - \, 6\widehat{j}\, +\, \widehat{k}}{\sqrt {41}}

B

2i^3j^13\frac{2\widehat{i}\, - \, 3\widehat{j}\, }{\sqrt {13}}

C

3i^k^10\frac{3\widehat{i}\, -\, \widehat{k}\, }{\sqrt {10}}

D

4i^+3j^3k^34\frac{4\widehat{i}\, + \, 3\widehat{j}\, -\, 3\widehat{k}}{\sqrt {34}}

Answer

3i^k^10\frac{3\widehat{i}\, -\, \widehat{k}\, }{\sqrt {10}}

Explanation

Solution

As we know that, a vector coplanar to a,b \overrightarrow {a} , \overrightarrow {b} and
orthogonal to c \overrightarrow {c} is λ(a×b)×c.\lambda \\{(\overrightarrow {a} \times \overrightarrow {b}) \times \overrightarrow {c} \\}.
\therefore A vector coplanar to (2i^+j^+k^),(i^+j^+k^) (2\widehat{i} + \widehat{j} + \widehat{k}), (\widehat{i} + \widehat{j} + \widehat{k}) and
orthogonal to 3i^+2j^+6k^3\widehat{i} + 2\widehat{j} + 6\widehat{k}
\hspace10mm =λ[(2i^+j^+k^)×(i^+j^+k^)×(3i^+2j^+6k^)]=\lambda \, [\\{(2\widehat{i} + \widehat{j} + \widehat{k}) \times (\widehat{i} + \widehat{j} + \widehat{k})\\} \, \, \times (3\widehat{i} + 2\widehat{j} + 6\widehat{k})]
\hspace10mm =λ[(2i^+j^+3k^)×(3i^+2j^+6k^)]=λ(21j^7k^)=\lambda \, [(2\widehat{i} + \widehat{j} + 3\widehat{k}) \times (3\widehat{i} + 2\widehat{j} + 6\widehat{k})] = \lambda( 21\widehat{j} - 7\widehat{k})
\therefore Unit vector =+(21j^7k^)(21)2+(7)2=+(3i^k^)10= +\frac{( 21\widehat{j} - 7\widehat{k})}{\sqrt {(21)^2+(7)^2}} \, = + \frac{(3\widehat{i} - \widehat{k})}{\sqrt 10}