Solveeit Logo

Question

Question: The unit vector perpendicular to \(3\mathbf{i} + 2\mathbf{j} - \mathbf{k}\) and \(12\mathbf{i} + 5\m...

The unit vector perpendicular to 3i+2jk3\mathbf{i} + 2\mathbf{j} - \mathbf{k} and 12i+5j5k,12\mathbf{i} + 5\mathbf{j} - 5\mathbf{k}, is

A

5i3j+9k115\frac{5\mathbf{i} - 3\mathbf{j} + 9\mathbf{k}}{\sqrt{115}}

B

5i+3j9k115\frac{5\mathbf{i} + 3\mathbf{j} - 9\mathbf{k}}{\sqrt{115}}

C

5i+3j9k115\frac{- 5\mathbf{i} + 3\mathbf{j} - 9\mathbf{k}}{\sqrt{115}}

D

5i+3j+9k115\frac{5\mathbf{i} + 3\mathbf{j} + 9\mathbf{k}}{\sqrt{115}}

Answer

5i+3j9k115\frac{- 5\mathbf{i} + 3\mathbf{j} - 9\mathbf{k}}{\sqrt{115}}

Explanation

Solution

\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & - 1 \\ 12 & 5 & - 5 \end{matrix} \right| = - 5\mathbf{i} + 3\mathbf{j} - 9\mathbf{k}.$$ Unit vector along $\mathbf{a} \times \mathbf{b} = \frac{- 5\mathbf{i} + 3\mathbf{j} - 9\mathbf{k}}{\sqrt{115}}.$