Solveeit Logo

Question

Question: The unit vector parallel to the resultant vector of \(2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}\) and ...

The unit vector parallel to the resultant vector of 2i+4j5k2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k} and i+2j+3k\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} is

A

17(3i+6j2k)\frac{1}{7}(3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k})

B

i+j+k3\frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}

C

i+j+2k6\frac{\mathbf{i} + \mathbf{j} + 2\mathbf{k}}{\sqrt{6}}

D

169(ij+8k)\frac{1}{\sqrt{69}}( - \mathbf{i} - \mathbf{j} + 8\mathbf{k})

Answer

17(3i+6j2k)\frac{1}{7}(3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k})

Explanation

Solution

Resultant vector

=(2i+4j5k)+(i+2j+3k)=3i+6j2k= (2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}) + (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}

Unit vector =3i+6j2k9+36+4=17(3i+6j2k)= \frac{3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}}{\sqrt{9 + 36 + 4}} = \frac{1}{7}(3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}).