Solveeit Logo

Question

Physics Question on Gauss Law

The unit of permittivity of free space, ε0,{{\varepsilon }_{0}}, is

A

coulomb/newton-metre

B

Newton metre2^2 / Coulomb2^2

C

Coulomb2^2 /Newton metre2^2

D

Coulomb2^2 / (Newton metre)2^2

Answer

Coulomb2^2 /Newton metre2^2

Explanation

Solution

Key Idea : Substitute the units for all the quantities involved in an expression written for permittivity of free space. By Coulomb's law, the electrostatic force F=14πε0×q1q2r2F =\frac{1}{4 \pi \varepsilon_{0}} \times \frac{q_{1} q_{2}}{r^{2}} ε0=14π×q1q2r2F\Rightarrow \varepsilon_{0} =\frac{1}{4 \pi} \times \frac{q_{1} q_{2}}{r^{2} F} Substituting the units for q,rq, r and FF, we obtain unit of ε0= coulomb × coulomb  newton ( metre )2\varepsilon_{0}=\frac{\text { coulomb } \times \text { coulomb }}{\text { newton }-(\text { metre })^{2}} =( coulomb )2 newton ( metre )2=\frac{(\text { coulomb })^{2}}{\text { newton }-(\text { metre })^{2}} =C2/Nm2= C ^{2} / N - m ^{2}