Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The unit normal vector to the plane 3x+2y2z=8173x+2y-2z=8\sqrt{17} is

A

13(i^+j^k^)\frac{1}{\sqrt{3}}\,(\hat{i}+\hat{j}-\hat{k})

B

117(3i^+2j^2k^)\frac{1}{\sqrt{17}}\,(3\hat{i}+2\hat{j}-2\hat{k})

C

113(3i^+2j^+2k^)\frac{1}{\sqrt{13}}\,(3\hat{i}+2\hat{j}+2\hat{k})

D

111(3i^+j^+k^)\frac{1}{\sqrt{11}}\,(3\hat{i}+\hat{j}+\hat{k})

Answer

117(3i^+2j^2k^)\frac{1}{\sqrt{17}}\,(3\hat{i}+2\hat{j}-2\hat{k})

Explanation

Solution

We have the given equation of plane
3x+2y2z=8173x+2y-2z=8\sqrt{17}
\Rightarrow (xi^+yj^+zk^).(3i^+2j^2k^)=817(x\hat{i}+y\hat{j}+z\hat{k}).(3\hat{i}+2\hat{j}-2\hat{k})=8\sqrt{17}
Which is of the form
r.n=d\vec{r}.\,\,\vec{n}\,=\,d
Where n\vec{n} is the normal vector to the plane. Thus, required unit normal vector.
n=nn=3i^+2j^2k^9+4+4=117(3i^+2j^2k^)\vec{n}=\frac{|\vec{n}|}{|\vec{n}|}=\frac{3\hat{i}+2\hat{j}-2\hat{k}}{\sqrt{9+4+4}}=\frac{1}{\sqrt{17}}\,(3\hat{i}+2\hat{j}-2\hat{k})