Solveeit Logo

Question

Question: The two vectors \[a\] and \[b\] are perpendicular. If \[a\] has magnitude 8 and \[b\] has magnitude ...

The two vectors aa and bb are perpendicular. If aa has magnitude 8 and bb has magnitude 3. What is a2b\left| {a - 2b} \right|?

Explanation

Solution

First we will take square of the given expression a2b\left| {a - 2b} \right|. Then we will use the rule aa=a2\vec a \cdot \vec a = {\left| {\vec a} \right|^2} and ba=ab\vec b \cdot \vec a = \vec a \cdot \vec b in the obtained equation. Then simplify it to find the required value.

Complete step-by-step answer:
We are given that the two vectors aa and bb are perpendicular, a=8\left| {\vec a} \right| = 8 and b=3\left| {\vec b} \right| = 3.
Since we know that a\vec a and b\vec b are perpendicular, so ab=0\vec a \cdot \vec b = 0.
Taking square of the given expression a2b\left| {a - 2b} \right|, we get
a2b2=(a2b)(a2b)\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \left( {\vec a - 2\vec b} \right) \cdot \left( {\vec a - 2\vec b} \right)
Simplifying the right hand side of the above equation, we get
a2b2=aa2ba2ab+4bb\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \vec a \cdot \vec a - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4\vec b \cdot \vec b
Using the rule, aa=a2\vec a \cdot \vec a = {\left| {\vec a} \right|^2} in the above equation, we get
a2b2=a22ba2ab+4b2\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2}
Using the rule, ba=ab\vec b \cdot \vec a = \vec a \cdot \vec b in the above equation, we get

a2b2=a22ab2ab+4b2 a2b2=a24ab+4b2  \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec a \cdot \vec b - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\\ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 4\vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\\

Substituting the values a=8\left| {\vec a} \right| = 8 , b=3\left| {\vec b} \right| = 3 and ab=0\vec a \cdot \vec b = 0 in the above equation, we get

a2b2=824(0)+4(32) a2b2=640+49 a2b2=64+36 a2b2=100  \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {8^2} - 4\left( 0 \right) + 4\left( {{3^2}} \right) \\\ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 - 0 + 4 \cdot 9 \\\ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 + 36 \\\ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 100 \\\

Taking square root on both sides of the above equation, we get

a2b=±100 a2b=±10  \Rightarrow \left| {\vec a - 2\vec b} \right| = \pm \sqrt {100} \\\ \Rightarrow \left| {\vec a - 2\vec b} \right| = \pm 10 \\\

Since the magnitude can never be negative, the negative value of a2b\left| {\vec a - 2\vec b} \right| is discarded.
Therefore, 10 is the required value.

Note: One should know that the magnitude of a vector is the length of a line segment and the vector, which has a magnitude of 1 is known as the unit vector. The key point is to use the rules aa=a2\vec a \cdot \vec a = {\left| {\vec a} \right|^2} and ba=ab\vec b \cdot \vec a = \vec a \cdot \vec b to simplify. We need to know that when two vectors are perpendicular, then their dot product is always zero or else the answer will be wrong.