Solveeit Logo

Question

Question: The two of the straight lines represented by the equation ax<sup>3</sup> + bx<sup>2</sup>y + cxy<su...

The two of the straight lines represented by the equation

ax3 + bx2y + cxy2 + dy3 = 0 will be at right angles, if-

A

a2 + c2 = 0

B

a2 + ac + bd + d2 = 0

C

a2c2 + bd + d2 = 0

D

None of these

Answer

a2 + ac + bd + d2 = 0

Explanation

Solution

ax3 + bx2y + cxy2 + dy3 = 0 … (1)

This is a homogeneous equation of third degree in x and y.

Hence represents combined equations of three straight lines passing through origin

Divide (i) by x3 Ž a + b (y/x) + c(y/x)2 + d(y/x)3 = 0

Put (y/x) = m Ž a + bm + cm2 + dm3 = 0.

This is a cubic equation in ‘m’ with three roots m1, m2, m3 [i.e. slopes of the three lines].

m1 m2 m3=(a/d);m1+m2+m3=(c/d)()m1 m2+m2 m3+m1 m3=(b/d)}\left. \begin{array} { r } \mathrm { m } _ { 1 } \mathrm {~m} _ { 2 } \mathrm {~m} _ { 3 } = - ( \mathrm { a } / \mathrm { d } ) ; \mathrm { m } _ { 1 } + \mathrm { m } _ { 2 } + \mathrm { m } _ { 3 } = - ( \mathrm { c } / \mathrm { d } ) \\ ( * ) \\ \mathrm { m } _ { 1 } \mathrm {~m} _ { 2 } + \mathrm { m } _ { 2 } \mathrm {~m} _ { 3 } + \mathrm { m } _ { 1 } \mathrm {~m} _ { 3 } = ( \mathrm { b } / \mathrm { d } ) \end{array} \right\}

For any of two lines to be perpendicular to each other i.e.m1m2 = –1.

Substituting in (*) we get

m3 = (a/d) ; m1 + m2 = –1[(a + c)/d]; m3 (m1 + m2)

= [(b + d)/d]

\ (a/d) [–(a + c)/d] = (b + d)/d.

Ž –a2 – ac = bd + d2 Ž a2 + ac + bd + d2 = 0.