Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The two lines x=my+n,z=py+qx = my + n, z = py + q and x=my+n,z=py+qx = m'y + n',\, z = p'y + q' are perpendicular to each other, if

A

mm+pp=1mm' + pp' = 1

B

mm+pp=1\frac{m}{m'} + \frac{p}{p'} = -1

C

mm+pp=1\frac{m}{m'} + \frac{p}{p'} = 1

D

mm+pp=1mm' + pp' = -1

Answer

mm+pp=1mm' + pp' = -1

Explanation

Solution

Given lines are
x=my+n,z=py+qx = my + n, z = py + q
and x=my+n,z=py+qx = m'\, y + n',\, z = p'\, y + q'
Above equations can be rewritten as
xnm=y01=zqp\frac{x-n}{m} = \frac{y-0}{1} = \frac{z-q}{p}
and xnm=y01=zqp\frac{x-n'}{m'} = \frac{y-0}{1} = \frac{z-q'}{p'}
Lines will be perpendicular, if
mm+1+pp=0mm' + 1 + pp' = 0
mm+pp=1\Rightarrow mm' + pp' = -1