Solveeit Logo

Question

Mathematics Question on Application of derivatives

The two curves x33xy2+2=0x^3 - 3xy^2 + 2 = 0 and 3x2yy3=23x^2y - y^3 = 2

A

Touch each other

B

Cut each other at right angle

C

Cut at an angle π/3\pi / 3

D

Cut at an angle π/4\pi / 4

Answer

Cut each other at right angle

Explanation

Solution

We have, x33xy2+2=0x^{3}-3 x y^{2}+2=0
3x26xydydx3y2=0\Rightarrow 3 x^{2}-6 x y \frac{d y}{d x}-3 y^{2}=0
dydx=3(x2y2)6xy\Rightarrow \frac{d y}{d x}=\frac{3\left(x^{2}-y^{2}\right)}{6 x y}
Now, (dydx)(h,k)=3(h2k2)6hk=m1\left(\frac{d y}{d x}\right)_{(h, k)}=\frac{3\left(h^{2}-k^{2}\right)}{6 h k}=m_{1}[say]
and 3x2yy8=23 x^{2} y-y^{8}=2
3x2dydx+6xy3y2dydx=0\Rightarrow 3 x^{2} \frac{d y}{d x}+6 x y-3 y^{2} \frac{d y}{d x}=0
dydx=6xy3(x2y2)\Rightarrow \frac{d y}{d x}=\frac{-6 x y}{3\left(x^{2}-y^{2}\right)}
Now, (dydx)(h,h)=6hk3(h2k2)=m2\left(\frac{d y}{d x}\right)_{(h, h)}=\frac{-6 h k}{3\left(h^{2}-k^{2}\right)}=m_{2}[say]
m1m2=3(h2k2)6hk×6hk3(h2k2)=1\therefore m_{1} \cdot m_{2}=\frac{3\left(h^{2}-k^{2}\right)}{6 h k} \times \frac{-6 h k}{3\left(h^{2}-k^{2}\right)}=-1
Hence, both the curves cut each other at right angle.