Solveeit Logo

Question

Question: The two conics bx2 = y and \(\frac{x^{2}}{a^{2}}–\frac{y^{2}}{b^{2}}\)= 1 intersect iff-...

The two conics bx2 = y and x2a2y2b2\frac{x^{2}}{a^{2}}–\frac{y^{2}}{b^{2}}= 1 intersect iff-

A

12–\frac{1}{\sqrt{2}}Ј a Ј12\frac{1}{\sqrt{2}}

B

a < –12\frac{1}{\sqrt{2}}

C

a>12\frac{1}{\sqrt{2}}

D

a < b

Answer

12–\frac{1}{\sqrt{2}}Ј a Ј12\frac{1}{\sqrt{2}}

Explanation

Solution

Substituting x2 = 1b\frac{1}{b}y, the equation of the conic gives the equation a2y2 – by + a2b2 = 0. This has real roots iff

b2 – 4a4b2 і 0 i.e., a4 Ј 14\frac{1}{4}giving12–\frac{1}{\sqrt{2}}Ј a Ј12\frac{1}{\sqrt{2}}