Solveeit Logo

Question

Question: The two adjacent sides of a parallelogram are \(2\hat i - 4\hat j - 5\hat k\) and \(2\hat i + 2\hat ...

The two adjacent sides of a parallelogram are 2i^4j^5k^2\hat i - 4\hat j - 5\hat k and 2i^+2j^+3k^2\hat i + 2\hat j + 3\hat k. Find the two-unit vectors parallel to its diagonals. Using the diagonals vectors, find the area of the parallelogram.

Explanation

Solution

Hint: Area of Parallelogram,A=12P1×P2A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|.

According to the question, we have two adjacent sides of parallelogram, which is 2i^4j^5k^2\hat i - 4\hat j - 5\hat k and 2i^+2j^+3k^2\hat i + 2\hat j + 3\hat k
Now first we will assume the given value: -
a=2i^4j^5k^ b=2i^+2j^+3k^  \Rightarrow \vec a = 2\hat i - 4\hat j - 5\hat k \\\ \Rightarrow \vec b = 2\hat i + 2\hat j + 3\hat k \\\
And we know that any one diagonal of a parallelogram is given as
P=a+b 2i^4j^5k^+2i^+2j^+3k^ 4i^2j^2k^  \vec P = \vec a + \vec b \\\ \Rightarrow 2\hat i - 4\hat j - 5\hat k + 2\hat i + 2\hat j + 3\hat k \\\ \Rightarrow 4\hat i - 2\hat j - 2\hat k \\\
Therefore, we can calculate the unit vector along the diagonal, that is
P1P1=4i^2j^2k^16+4+4=4i^2j^2k^24=4i^2j^2k^2×6\dfrac{{{{\vec P}_1}}}{{\left| {{{\vec P}_1}} \right|}} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {16 + 4 + 4} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {24} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{2 \times \sqrt 6 }}
2i^j^k^6\Rightarrow \dfrac{{2\hat i - \hat j - \hat k}}{{\sqrt 6 }}
Also, another diagonal of a parallelogram is given by: -
P2=ba 2i^+2j^+3k^2i^+4j^+k^ 6j^+8k^  \Rightarrow {{\vec P}_2} = \vec b - \vec a \\\ \Rightarrow 2\hat i + 2\hat j + 3\hat k - 2\hat i + 4\hat j + \hat k \\\ \Rightarrow 6\hat j + 8\hat k \\\
Therefore, unit vector along the diagonal is given by: -
P2P2=6j^+8k^36+64=6j^+8k^100=6j^+8k^10 3j^+4k^5  \dfrac{{{{\vec P}_2}}}{{\left| {{{\vec P}_2}} \right|}} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {36 + 64} }} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {100} }} = \dfrac{{6\hat j + 8\hat k}}{{10}} \\\ \Rightarrow \dfrac{{3\hat j + 4\hat k}}{5} \\\
Now, we will take the cross product of the two diagonals
\Rightarrow {{\vec P}_1} \times {{\vec P}_2} \\\ \Rightarrow \left( {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ 4&{ - 2}&{ - 2} \\\ 0&6&8 \end{array}} \right) \\\
Further solving and simplify gives
i^(16+12)j^(320)+k^(240) 4i^32j^+24k^  \Rightarrow \hat i\left( { - 16 + 12} \right) - \hat j\left( {32 - 0} \right) + \hat k\left( {24 - 0} \right) \\\ \Rightarrow - 4\hat i - 32\hat j + 24\hat k \\\
From here, we will calculate the Area of parallelogram
A=12P1×P2=12×16+1024+57=16162A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right| = \dfrac{1}{2} \times \sqrt {16 + 1024 + 57} = \dfrac{{\sqrt {1616} }}{2}
So, the answer is
41012=2101sq.units\Rightarrow \dfrac{{4\sqrt {101} }}{2} = 2\sqrt {101} sq.units

Note: - Whenever such a type of question is asked Always start with finding the diagonals of a parallelogram. After that find the unit vector along the diagonals one by one. Then use the formula Area of Parallelogram in terms of Diagonals,A=12P1×P2A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right| where P1{\vec P_1}andP2{\vec P_2}are diagonals of a Parallelogram.