Solveeit Logo

Question

Mathematics Question on Vector Algebra

The two adjacent sides of a parallelogram are 2i^\hat{i}-4j^\hat j+5k^\hat kand i^\hat{i}-2j^\hat j-3k^\hat k. Find the unit vector parallel to its diagonal. Also, find its area.

Answer

Adjacent sides of a parallelogram are given as a\vec a=2i^\hat{i}-4j^\hat j+5k^\hat kand b→=i^\hat{i}-2j^\hat j-3k^\hat k
Then,the diagonal of a parallelogram is given by a\vec a+b\vec b.
a\vec a+b\vec b=(2+1)i^\hat{i}+(-4-2)j^\hat j+(5-3)k^\hat k=3i^\hat{i}-6j^\hat j+2k^\hat k
Thus, the unit vector parallel to the diagonal is
a+ba+b\frac{\vec a+\vec b}{|\vec a+\vec b|}=3i^6j^+2k^32\frac{3\hat i-6\hat j+2\hat k}{\sqrt{32}}+(-6)2+22=3i^\hat{i}-6j^\hat j+2\hat k$$\sqrt{9+36+4}=3i^6j^+2k^7\frac{3\hat i-6\hat j+2\hat k}{7}=37i^67j^+27k^\frac{3}{7}\hat i-\frac{6}{7}\hat j+\frac{2}{7}\hat k
∴Area of parallelogram ABCD =i^\hat{i}(12+10)-j^\hat j(-6-5)+k^\hat k(-4+4)
=22i^\hat i+11j^\hat j
=11(2i^\hat i+j^\hat j)
∴|a×b\vec a\times \vec b|=1122\sqrt{22}+12=115\sqrt{5}
Hence, the area of a parallelogram is 115\sqrt{5} square units.