Solveeit Logo

Question

Question: The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60<sup>o<...

The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60o. If the third side is 3, the remaining fourth side is

A

2

B

3

C

4

D

5

Answer

2

Explanation

Solution

Let a=PQ=2a = P Q = 2 , b=QR=5b = Q R = 5, RS=cR S = c, SP=dS P = d

Given, Area of quadrilateral PQRS = 434 \sqrt { 3 }

⇒ Area of ( PQR+PRS)\triangle P Q R + \triangle P R S ) = 12[2×5sin60+c×dsin120]\frac { 1 } { 2 } \left[ 2 \times 5 \sin 60 ^ { \circ } + c \times d \sin 120 ^ { \circ } \right]

43=532+34cd4 \sqrt { 3 } = \frac { 5 \sqrt { 3 } } { 2 } + \frac { \sqrt { 3 } } { 4 } c dcd=6c d = 6 ........(i)

Now by cosine formula RS2+SP22RSSPcos120=PR2R S ^ { 2 } + S P ^ { 2 } - 2 R S \cdot S P \cdot \cos 120 ^ { \circ } = P R ^ { 2 } =PQ2+QR22PQQRcos60= P Q ^ { 2 } + Q R ^ { 2 } - 2 P Q \cdot Q R \cos 60 ^ { \circ }

c2+d22cd(12)=4+252(2)(5)(12)c ^ { 2 } + d ^ { 2 } - 2 c d \left( - \frac { 1 } { 2 } \right) = 4 + 25 - 2 ( 2 ) ( 5 ) \left( \frac { 1 } { 2 } \right)

c2+d2+cd=19c ^ { 2 } + d ^ { 2 } + c d = 19c2+d2=196=13c ^ { 2 } + d ^ { 2 } = 19 - 6 = 13 ……..(ii)

Solving (i) and (ii) we get c=2c = 2and d=3d = 3.