Solveeit Logo

Question

Question: The truth values of \(p,q{\text{ and }}r\) for which \(\left( {p \wedge q} \right) \vee \left( { \si...

The truth values of p,q and rp,q{\text{ and }}r for which (pq)(r)\left( {p \wedge q} \right) \vee \left( { \sim r} \right) has truth values FF are respectively
A.F,T,FF,T,F
B.F,F,FF,F,F
C.T,T,TT,T,T
D.T,F,FT,F,F
E.F,F,TF,F,T

Explanation

Solution

Hint- This question is solved by making truth table of p, q, r, r, (pq) and (pq)(r)p,{\text{ }}q,{\text{ }}r,{\text{ }} \sim r,{\text{ }}\left( {p \wedge q} \right){\text{ and }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right).

Now given that,
(pq)(r)\left( {p \wedge q} \right) \vee \left( { \sim r} \right) has truth values FF
Now we have to find the truth values of p,q and rp,q{\text{ and }}r
We will find that by using truth table,
Now the possible combinations are 23=8{2^3} = 8 (Because variables are three.)
Also we know that,
 means NOT  means AND  means OR  \sim {\text{ means }}NOT \\\ \wedge {\text{ means }}AND \\\ \vee {\text{ means }}OR \\\

p q r r (pq) (pq)(r) T T T F T T F T T F F F T F T F F F F F T F F F T T F T T T F T F T F T T F F T F T F F F T F T  p{\text{ }}q{\text{ }}r{\text{ }} \sim r{\text{ }}\left( {p \wedge q} \right){\text{ }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right) \\\ T{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T \\\ F{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\\ T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\\ F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\\ T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T{\text{ }}T \\\ F{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\\ T{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\\ F{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\\
Now it is given that (pq)(r)\left( {p \wedge q} \right) \vee \left( { \sim r} \right) has truth values FF and we have to find the values of p,q and rp,q{\text{ and }}r
when (pq)(r)\left( {p \wedge q} \right) \vee \left( { \sim r} \right) has truth values FF.
Now, from the truth table, we will see the respective values of p,q and rp,q{\text{ and }}r for (pq)(r)\left( {p \wedge q} \right) \vee \left( { \sim r} \right) has truth values FF.
Therefore, the values of p,q and rp,q{\text{ and }}r are F,F,TF,F,T respectively.
Thus, the correct option is (E).

Note- Whenever we face such types of questions the key concept is that we should solve it by using a truth table. In this question we find the values of p,q and rp,q{\text{ and }}r by making the truth table and then we see the respective values of p,q and rp,q{\text{ and }}r for (pq)(r)\left( {p \wedge q} \right) \vee \left( { \sim r} \right) has truth values FF.