Solveeit Logo

Question

Question: The trigonometric function \( \sin 4\theta \) can be written as: A. \( 4\sin \theta \left( 1-2{{\s...

The trigonometric function sin4θ\sin 4\theta can be written as:
A. 4sinθ(12sin2θ)1sin2θ4\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)\sqrt{1-{{\sin }^{2}}\theta }
B. 2sinθcosθsin2θ2\sin \theta \cos \theta {{\sin }^{2}}\theta
C. 4sinθ6sin3θ4\sin \theta -6{{\sin }^{3}}\theta
D. 2sin2θ2\sin 2\theta

Explanation

Solution

Hint : Use the following identities to convert from terms involving 4θ4\theta to 2θ2\theta and to θ\theta .
sin(A±B)=sinAcosB±sinBcosA\sin (A\pm B)=\sin A\cos B\pm \sin B\cos A
cos(A±B)=cosAcosBsinAsinB\cos (A\pm B)=\cos A\cos B\mp \sin A\sin B
Recall that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 . Use this fact to convert the terms involving cosθ\cos \theta into sinθ\sin \theta .
Simplify until we are left with terms containing only sinθ\sin \theta .

Complete step-by-step answer :
We can write sin4θ=sin(2θ+2θ)\sin 4\theta =\sin (2\theta +2\theta ) .
Using the identity sin(A+B)=sinAcosB+sinBcosA\sin (A+B)=\sin A\cos B+\sin B\cos A , we get:
= sin2θcos2θ+sin2θcos2θ\sin 2\theta \cos 2\theta +\sin 2\theta \cos 2\theta
= 2sin2θcos2θ2\sin 2\theta \cos 2\theta
Writing 2θ2\theta as θ+θ\theta + \theta ; we get
= 2sin(θ+θ)cos(θ+θ)2\sin (\theta +\theta )\cos (\theta +\theta )
Using the sin(A+B)=sinAcosB+sinBcosA\sin (A+B)=\sin A\cos B+\sin B\cos A and cos(A+B)=cosAcosBsinAsinB\cos (A+B)=\cos A\cos B-\sin A\sin B , we get:
= 2[2sinθcosθ(cos2θsin2θ)]2\left[ 2\sin \theta \cos \theta \left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right) \right]
Which can be written as:
= 4sinθcos2θ(cos2θsin2θ)4\sin \theta \sqrt{{{\cos }^{2}}\theta }\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)
Using the identity cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta , we get:
= 4sinθ1sin2θ(1sin2θsin2θ)4\sin \theta \sqrt{1-{{\sin }^{2}}\theta }\left( 1-{{\sin }^{2}}\theta -{{\sin }^{2}}\theta \right)
= 4sinθ(12sin2θ)1sin2θ4\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)\sqrt{1-{{\sin }^{2}}\theta }
Therefore, the correct answer option is A. 4sinθ(12sin2θ)1sin2θ4\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)\sqrt{1-{{\sin }^{2}}\theta } .
So, the correct answer is “Option A”.

Note : In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
sinθ=PH\sin \theta =\dfrac{P}{H} , cosθ=BH\cos \theta =\dfrac{B}{H} , tanθ=PB\tan \theta =\dfrac{P}{B}
tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } , cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }
cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } , secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } , tanθ=1cotθ\tan \theta =\dfrac{1}{\cot \theta }
Using the Pythagoras' theorem:
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
tan2θ+1=sec2θ{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta
1+cot2θ=csc2θ1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta
Sum-Product formula:
sin2A+sin2B=2sin(A+B)cos(AB)\sin 2A+\sin 2B=2\sin (A+B)\cos (A-B)
sin2Asin2B=2cos(A+B)sin(AB)\sin 2A-\sin 2B=2\cos (A+B)\sin (A-B)
cos2A+cos2B=2cos(A+B)cos(AB)\cos 2A+\cos 2B=2\cos (A+B)\cos (A-B)
cos2Acos2B=2sin(A+B)sin(AB)\cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B)