Question
Question: The trigonometric function \( \sin 4\theta \) can be written as: A. \( 4\sin \theta \left( 1-2{{\s...
The trigonometric function sin4θ can be written as:
A. 4sinθ(1−2sin2θ)1−sin2θ
B. 2sinθcosθsin2θ
C. 4sinθ−6sin3θ
D. 2sin2θ
Solution
Hint : Use the following identities to convert from terms involving 4θ to 2θ and to θ .
sin(A±B)=sinAcosB±sinBcosA
cos(A±B)=cosAcosB∓sinAsinB
Recall that sin2θ+cos2θ=1 . Use this fact to convert the terms involving cosθ into sinθ .
Simplify until we are left with terms containing only sinθ .
Complete step-by-step answer :
We can write sin4θ=sin(2θ+2θ) .
Using the identity sin(A+B)=sinAcosB+sinBcosA , we get:
= sin2θcos2θ+sin2θcos2θ
= 2sin2θcos2θ
Writing 2θ as θ+θ ; we get
= 2sin(θ+θ)cos(θ+θ)
Using the sin(A+B)=sinAcosB+sinBcosA and cos(A+B)=cosAcosB−sinAsinB , we get:
= 2[2sinθcosθ(cos2θ−sin2θ)]
Which can be written as:
= 4sinθcos2θ(cos2θ−sin2θ)
Using the identity cos2θ=1−sin2θ , we get:
= 4sinθ1−sin2θ(1−sin2θ−sin2θ)
= 4sinθ(1−2sin2θ)1−sin2θ
Therefore, the correct answer option is A. 4sinθ(1−2sin2θ)1−sin2θ .
So, the correct answer is “Option A”.
Note : In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
sinθ=HP , cosθ=HB , tanθ=BP
tanθ=cosθsinθ , cotθ=sinθcosθ
cscθ=sinθ1 , secθ=cosθ1 , tanθ=cotθ1
Using the Pythagoras' theorem:
sin2θ+cos2θ=1
tan2θ+1=sec2θ
1+cot2θ=csc2θ
Sum-Product formula:
sin2A+sin2B=2sin(A+B)cos(A−B)
sin2A−sin2B=2cos(A+B)sin(A−B)
cos2A+cos2B=2cos(A+B)cos(A−B)
cos2A−cos2B=−2sin(A+B)sin(A−B)