Solveeit Logo

Question

Question: The trigonometric expression \(\dfrac{\tan \left( x-\dfrac{\pi }{2} \right)\cos \left( \dfrac{3\pi }...

The trigonometric expression tan(xπ2)cos(3π2+x)sin3(7π2x)cos(xπ2)tan(3π2+x)\dfrac{\tan \left( x-\dfrac{\pi }{2} \right)\cos \left( \dfrac{3\pi }{2}+x \right)-{{\sin }^{3}}\left( \dfrac{7\pi }{2}-x \right)}{\cos \left( x-\dfrac{\pi }{2} \right)\tan \left( \dfrac{3\pi }{2}+x \right)} when simplified reduces to:
(a)sinxcosx\sin x\cos x
(b)sin2x-{{\sin }^{2}}x
(c)sinxcosx-\sin x\cos x
(d)sin2x{{\sin }^{2}}x

Explanation

Solution

To simplify the given trigonometric expression, we are going to use the following trigonometric identities: tan(π2x)=cotx\tan \left( \dfrac{\pi }{2}-x \right)=\cot x, cos(3π2+x)=sinx\cos \left( \dfrac{3\pi }{2}+x \right)=\sin x because we know that cosine is positive in fourth quadrant. cos(π2x)=sinx\cos \left( \dfrac{\pi }{2}-x \right)=\sin x, tan(3π2+x)=cotx\tan \left( \dfrac{3\pi }{2}+x \right)=-\cot x, sin(7π2x)=cosx\sin \left( \dfrac{7\pi }{2}-x \right)=-\cos x. After substituting these values in the given expression you have to further use the basic algebra to ultimately have the simplified trigonometric expression.

Complete step by step answer:
We have given the following trigonometric expression as follows:
tan(xπ2)cos(3π2+x)sin3(7π2x)cos(xπ2)tan(3π2+x)\dfrac{\tan \left( x-\dfrac{\pi }{2} \right)\cos \left( \dfrac{3\pi }{2}+x \right)-{{\sin }^{3}}\left( \dfrac{7\pi }{2}-x \right)}{\cos \left( x-\dfrac{\pi }{2} \right)\tan \left( \dfrac{3\pi }{2}+x \right)}
We have to simplify it and then compare the answer with the options given above to make the final choice.
As you can see that in the above expression, all the trigonometric functions are given in terms of some difference and addition of multiples of π2\dfrac{\pi }{2} but tan(xπ2)&cos(xπ2)\tan \left( x-\dfrac{\pi }{2} \right)\And \cos \left( x-\dfrac{\pi }{2} \right) is not in that form so we are going to make these trigonometric terms in that form by taking negative sign as common inside the bracket of these trigonometric functions.
tan((π2x))cos(3π2+x)sin3(7π2x)cos((π2x))tan(3π2+x)\dfrac{\tan \left( -\left( \dfrac{\pi }{2}-x \right) \right)\cos \left( \dfrac{3\pi }{2}+x \right)-{{\sin }^{3}}\left( \dfrac{7\pi }{2}-x \right)}{\cos \left( -\left( \dfrac{\pi }{2}-x \right) \right)\tan \left( \dfrac{3\pi }{2}+x \right)}
Now, we know that,
tan(x)=tanx cos(x)=cosx \begin{aligned} & \tan \left( -x \right)=-\tan x \\\ & \cos \left( -x \right)=\cos x \\\ \end{aligned}
Using the above relation in the given trigonometric expression we get,
tan(π2x)cos(3π2+x)sin3(7π2x)cos(π2x)tan(3π2+x)\dfrac{-\tan \left( \dfrac{\pi }{2}-x \right)\cos \left( \dfrac{3\pi }{2}+x \right)-{{\sin }^{3}}\left( \dfrac{7\pi }{2}-x \right)}{\cos \left( \dfrac{\pi }{2}-x \right)\tan \left( \dfrac{3\pi }{2}+x \right)}
To solve the above expression, we are going to use the following trigonometric identities as follows:
tan(π2x)=cotx cos(π2x)=sinx \begin{aligned} & \tan \left( \dfrac{\pi }{2}-x \right)=\cot x \\\ & \cos \left( \dfrac{\pi }{2}-x \right)=\sin x \\\ \end{aligned}
We know that, in the fourth quadrant, tanθ\tan \theta is negative, cosθ\cos \theta is positive and in the third quadrant sinθ\sin \theta is negative so keeping in mind these properties we can write the trigonometric functions as follows:
tan(3π2+x)=cotx cos(3π2+x)=sinx sin(7π2x)=cosx \begin{aligned} & \tan \left( \dfrac{3\pi }{2}+x \right)=-\cot x \\\ & \cos \left( \dfrac{3\pi }{2}+x \right)=\sin x \\\ & \sin \left( \dfrac{7\pi }{2}-x \right)=-\cos x \\\ \end{aligned}
Using the above relations to solve the given trigonometric expression as follows:
cotxsinx(cosx)3sinx(cotx)\dfrac{-\cot x\sin x-{{\left( -\cos x \right)}^{3}}}{\sin x\left( -\cot x \right)}

Writing cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} in the above expression we get,
cosxsinxsinx+cos3xsinx(cosxsinx) =cosx+cos3xcosx \begin{aligned} & \dfrac{-\dfrac{\cos x}{\sin x}\sin x+{{\cos }^{3}}x}{\sin x\left( -\dfrac{\cos x}{\sin x} \right)} \\\ & =\dfrac{-\cos x+{{\cos }^{3}}x}{-\cos x} \\\ \end{aligned}
Taking cosx\cos x as common from the numerator of the above expression we get,
cosx(1+cos2x)cosx\dfrac{\cos x\left( -1+{{\cos }^{2}}x \right)}{-\cos x}
In the above expression, cosx\cos x will be cancelled out from the numerator and the denominator we get,
(1+cos2x)1 =(1cos2x)1 =1cos2x \begin{aligned} & \dfrac{\left( -1+{{\cos }^{2}}x \right)}{-1} \\\ & =\dfrac{-\left( 1-{{\cos }^{2}}x \right)}{-1} \\\ & =1-{{\cos }^{2}}x \\\ \end{aligned}
There is a trigonometric identity that 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x so using this identity in the above expression we get,
sin2x{{\sin }^{2}}x
Hence, the simplified form of the given trigonometric expression is sin2x{{\sin }^{2}}x.

So, the correct answer is “Option D”.

Note: The mistake that could happen in this problem is that you might forgot to convert tan(xπ2)&cos(xπ2)\tan \left( x-\dfrac{\pi }{2} \right)\And \cos \left( x-\dfrac{\pi }{2} \right) into the form of complementary angle which are done by taking minus sign as common which we are shown below:
tan(xπ2)cos(3π2+x)sin3(7π2x)cos(xπ2)tan(3π2+x) =cotxsinx+(cosx)3sinx(cotx) =cosx+cos3xcosx =(1+cos2x) \begin{aligned} & \dfrac{\tan \left( x-\dfrac{\pi }{2} \right)\cos \left( \dfrac{3\pi }{2}+x \right)-{{\sin }^{3}}\left( \dfrac{7\pi }{2}-x \right)}{\cos \left( x-\dfrac{\pi }{2} \right)\tan \left( \dfrac{3\pi }{2}+x \right)} \\\ & =\dfrac{\cot x\sin x+{{\left( \cos x \right)}^{3}}}{\sin x\left( -\cot x \right)} \\\ & =\dfrac{\cos x+{{\cos }^{3}}x}{-\cos x} \\\ & =-\left( 1+{{\cos }^{2}}x \right) \\\ \end{aligned}
So, make sure you won’t make this mistake in the examination.