Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The trigonometric equation sin1x=2sin12a\sin^{-1}x = 2 \sin^{-1}2a has a real solution if

A

a>12\left|a\right| > \frac{1}{\sqrt{2}}

B

122<a>12 \frac{1}{2\sqrt{2}} < \left|a\right| > \frac{1}{\sqrt{2}}

C

a>122 \left|a\right| > \frac{1}{2\sqrt{2}}

D

a122 \left|a\right| \le \frac{1}{2\sqrt{2}}

Answer

a122 \left|a\right| \le \frac{1}{2\sqrt{2}}

Explanation

Solution

We know that, π2sin1xπ2-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2} π22sin12aπ2\Rightarrow \frac{-\pi}{2} \leq 2 \sin ^{-1} 2 a \leq \frac{\pi}{2} π4sin12aπ4\Rightarrow \frac{-\pi}{4} \leq \sin ^{-1} 2 a \leq \frac{\pi}{4} sin(π4)2asin(π4)\Rightarrow \sin \left(\frac{-\pi}{4}\right) \leq 2 a \leq \sin \left(\frac{\pi}{4}\right) 122a12\Rightarrow \frac{-1}{\sqrt{2}} \leq 2 a \leq \frac{1}{\sqrt{2}} 122a122\Rightarrow \frac{-1}{2 \sqrt{2}} \leq a \leq \frac{1}{2 \sqrt{2}} a122\Rightarrow|a| \leq \frac{1}{2 \sqrt{2}}