Solveeit Logo

Question

Question: The trigonometric equation \( \cos 2x-3\cos x+1=\dfrac{1}{\left( \cot 2x-\cot x \right)\sin \left( x...

The trigonometric equation cos2x3cosx+1=1(cot2xcotx)sin(xπ)\cos 2x-3\cos x+1=\dfrac{1}{\left( \cot 2x-\cot x \right)\sin \left( x-\pi \right)} holds if A. $ \cos x=0 $
B. cosx=1\cos x=1 C. $ \cos x=\dfrac{5}{2} $
D. None of these $$$$

Explanation

Solution

We multiply both side by sin(xπ)\sin \left( x-\pi \right) and use shift by π\pi formula sin(πθ)=sinθ\sin \left( \pi -\theta \right)=-\sin \theta . We convert all the rest of the terms into cosines using double angle formula cos2θ=2cos21,tan2θ=2tanθ1tan2θ\cos 2\theta =2{{\cos }^{2}}-1,\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } and the Pythagorean trigonometric identity sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 . We get an equation in cosx\cos x which we solve for cosx\cos x to choose the correct option. $$$$

Complete step-by-step answer:
We are given the following trigonometric equation in the question.
cos2x3cosx+1=1(cot2xcotx)sin(xπ)\cos 2x-3\cos x+1=\dfrac{1}{\left( \cot 2x-\cot x \right)\sin \left( x-\pi \right)}
We are asked in the question for what condition on cosx\cos x the above equation holds true. We know from domain and range of trigonometric functions that the cosine function cosx\cos x lies between 1-1 to 1. Let us multiply sin(xπ)\sin \left( x-\pi \right) both side to have;

(sin(xπ))(cos2x3cosx+1)=1cot2xcotx\Rightarrow \left( \sin \left( x-\pi \right) \right)\left( \cos 2x-3\cos x+1 \right)=\dfrac{1}{\cot 2x-\cot x}
We use the formula for shift by πc{{\pi }^{c}} of sine that is sin(θπ)=sinθ\sin \left( \theta -\pi \right)=-\sin \theta in the left hand side to have;
sinx(cos2x3cosx+1)=1cot2xcotx\Rightarrow -\sin x\left( \cos 2x-3\cos x+1 \right)=\dfrac{1}{\cot 2x-\cot x}
We use the cosine double angle formula cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 in the left hand side of above step for θ=x\theta =x to have;

& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-1-3\cos x+1 \right)=\dfrac{1}{\cot 2x-\cot x} \\\ & \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\cot 2x-\cot x} \\\ \end{aligned}$$ We convert the co-tangents into tangents in the right hand side using the reciprocal relation $ \cot \theta =\dfrac{1}{\tan \theta } $ to have; $$\Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1}{\tan 2x}-\dfrac{1}{\tan x}}$$ We use tangent double angle formula $ \tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } $ for $ \theta =x $ in the right hand side of the above step to have; $$\begin{aligned} & \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1}{\dfrac{2\tan x}{1-{{\tan }^{2}}x}}-\dfrac{1}{\tan x}} \\\ & \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1-{{\tan }^{2}}x}{2\tan x}-\dfrac{1}{\tan x}} \\\ \end{aligned}$$ We multiply 2 in the numerator and denominator $ \dfrac{1}{\tan x} $ in the right hand side to have; $$\begin{aligned} & \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1-{{\tan }^{2}}x}{2\tan x}-\dfrac{2}{2\tan x}} \\\ & \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1-{{\tan }^{2}}x-2}{2\tan x}} \\\ & \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{-1-{{\tan }^{2}}x}{2\tan x}} \\\ & \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{2\tan x}{-\left( 1+{{\tan }^{2}}x \right)} \\\ \end{aligned}$$ We use the Pythagorean identity of tangent and secant of angle $ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $ in the above step to have; $$\Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{2\tan x}{-{{\sec }^{2}}x}$$ We convert the tangent and secant in the right hand side using the identities $ \sec \theta =\dfrac{1}{\cos \theta },\tan \theta =\dfrac{\sin \theta }{\cos \theta } $ to have; $$\Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{2\dfrac{\sin x}{\cos x}}{-\dfrac{1}{{{\cos }^{2}}x}}$$ We cancel out the like terms top have; $$\begin{aligned} & \Rightarrow 2{{\cos }^{2}}x-3\cos x=2\cos x \\\ & \Rightarrow 2{{\cos }^{2}}x-5\cos x=0 \\\ \end{aligned}$$ Let us factorize by taking $ \cos x $ common and have; $$\begin{aligned} & \Rightarrow \cos x\left( 2\cos x-5 \right)=0 \\\ & \Rightarrow \cos x=0\text{ or }2\cos x-5=0 \\\ & \Rightarrow \cos x=0\text{ or }\cos x=\dfrac{5}{2} \\\ \end{aligned}$$ We have two possibilities $ \cos x=0 $ or $ \cos x=\dfrac{5}{2}=2.5 $ but we know that $ -1\le \cos x\le 1 $ for all $ x\in \mathsf{\mathbb{R}} $ . So we reject $ \cos x=\dfrac{5}{2} $ and accept $ \cos x=0 $ as the only possible condition for the given equation to hold true. So the only correct option is A. $$$$ **So, the correct answer is “Option A”.** **Note:** We can further solve for $ x $ from the obtained condition $ \cos x=0 $ and find solutions as $ x=\left( 2n+1 \right)\dfrac{\pi }{2} $ where $ n $ is an arbitrary integer. We note that the question presumes $ \cot 2x-\cot x\ne 0 $ and $ \sin \left( x-\pi \right)\ne 0\Rightarrow \sin x\ne 0 $ and that is why we could cancel out $ -\sin x $ . We must be careful of the confusion between reduction formula $ \sin \left( \pi -\theta \right)=\sin \theta $ and shift formula $ \sin \left( \theta -\pi \right)=-\sin \theta $ .