Solveeit Logo

Question

Mathematics Question on Straight lines

The triangle formed by the tangent to the curve f(x)=x2+bxbf(x)=x^2+bx-b a t the point (1,1) and the coordinate axes, lies in the first quadrant. If its area is 2 sq units, then the value of b is

A

2

B

3

C

-3

D

1

Answer

-3

Explanation

Solution

Let y=f(x)=x2+bxby=f(x)=x^2+bx-b The equation of the tangent at P (1, 1) to the curve 2y =2x2+2bx2b2x^2+2bx-2b is y+1=2x.1+6(x+1)26y+1 = 2x.1 + 6(x+1) - 26 \therefore y=(2+b)x(1+b)y = (2+b)x-(1+b) Its meet the coordinate axes at xA=1+b2+bx_A=\frac{1+b}{2+b} and yb=(1b)y_b=-(1-b) \therefore Area of Δ\Delta OAB = 12OA×OB\frac{1}{2}OA \times OB 12×(1+b)2(2+b)=2-\frac{1}{2}\times\frac{(1+b)^2}{(2+b)}=2 \Rightarrow (1+b)2+4(2+b)=0b2+6b+9=0(1+b)^2+4(2+b)=0 \Rightarrow b^2+6b+9=0 (b+3)2=0b=3\Rightarrow (b+3)^2=0 \Rightarrow b=-3