Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The triangle formed by the tangent to the curve f(x)=x2+bxbf (x) = x2 + bx - b at the point (1,1)(1,1) and the coordinate axes lies in the first quadrant. If its area is 22, then the value of b is

A

-1

B

3

C

-3

D

1

Answer

-3

Explanation

Solution

Given curve is y=f(x)=x2+bxby = f\left(x\right)=x^{2} + bx-b
On differentiating w.r.t. xx, we get
f(x)=2x+bf'\left(x\right) =2x+b
The equation of tangent at point (1, 1) is
y1=(dydx)(1,1)(x1)y-1=\left(\frac{dy}{dx}\right)_{\left(1,1\right)} \left(x-1\right)
y1=(b+2)(x1)\Rightarrow y -1=\left(b+2\right)\left(x-1\right)
(2+b)xy=1+b\Rightarrow \left(2+b\right)x-y=1+b
x(1+b2+b)y(1+b)=1\Rightarrow \frac{x}{\left(\frac{1+b}{2+b}\right)} - \frac{y}{\left(1+b\right)} = 1

So, OA=1+b2+bOA = \frac{1+b}{2+b}
and OB=(1+b)OB =-\left(1+b\right)
Now, area of ΔAOB=12×(1+b)[(1+b)](2+b)=2\Delta AOB = \frac{1}{2}\times \frac{\left(1+b\right)\left[-\left(1+b\right)\right]}{\left(2+b\right) } = 2
4(2+b)+(1+b)2=0\Rightarrow 4 \left(2 + b\right) + \left(1 + b\right)^{2} = 0
8+4b+1+b2+2b=0\Rightarrow 8+4 b+1+b^{2}+2 b=0
b2+6b+9=0\Rightarrow b^{2} + 6b + 9 = 0
(b+3)2b=3\Rightarrow \left(b+3\right)^{2} \Rightarrow b=-3