Solveeit Logo

Question

Physics Question on types of forces

The transverse displacement of a string fixed at both ends is given by y=0.6sin(2πx3)cos(120πt)y=0.6 \sin \left(\frac{2 \pi x}{3}\right) \cos (120 \pi t) where xx and yy are in metres and tt is in seconds. The length of the string is 1.5m1.5\, m and its mass is 3.0×102kg3.0 \times 10^{-2} kg. The tension in the string is equal to

A

648 N

B

724 N

C

832 N

D

980 N

Answer

648 N

Explanation

Solution

Given that y=0.06sin(2πx3)cos(120πt)y=0.06 \sin \left(\frac{2 \pi x}{3}\right) \cos (120 \pi t)
This is comparing with
y=2asin(2πxλ)cos(2πvtT)y=2 a \sin \left(\frac{2 \pi x}{\lambda}\right) \cos \left(\frac{2 \pi v t}{T}\right)
we get λ=3m,v=60Hz\lambda=3 \,m, v=60\, H z
Now v=vλ=60×3=180m/sv=v \lambda=60 \times 3=180\, m / s
Now v=(Tμ)180v=\sqrt{\left(\frac{T}{\mu}\right)} 180
=(Tμ)T=\sqrt{\left(\frac{T}{\mu}\right)} T
=180×180×μ=-180 \times 180 \times \mu
=180×180×ml=180 \times 180 \times \frac{m}{l}
=180×180×3×1021.5=180 \times 180 \times \frac{3 \times 10^{-2}}{1.5}
=648N=648\, N