Solveeit Logo

Question

Question: The transformed equation of x<sup>2</sup> + 6xy +8y<sup>2</sup> = 10, when the axes are rotated thro...

The transformed equation of x2 + 6xy +8y2 = 10, when the axes are rotated through an angle π4\frac{\pi}{4} is

A

15x2 – 14xy + 3y2 = 20

B

15x2 + 14xy – 3y2 = 20

C

15x2 + 14xy + 3y2 = 20

D

15x2 – 14xy – 3y2 = 20

Answer

15x2 + 14xy + 3y2 = 20

Explanation

Solution

x2 + 6xy + 8y2 = 10 .... (1)

Put {x=xcosπ4ysinπ4y=xsinπ4+ycosπ4}\begin{Bmatrix} x = x\cos\frac{\pi}{4} - y\sin\frac{\pi}{4} \\ y = x\sin\frac{\pi}{4} + y\cos\frac{\pi}{4} \end{Bmatrix} in equation (1)