Solveeit Logo

Question

Mathematics Question on Matrices

The transformation 'orthogonal projection on X- axis' is given by matrix

A

[01 00] \begin{bmatrix}0&1\\\ 0&0\end{bmatrix}

B

[00 10] \begin{bmatrix}0& 0 \\\ 1 &0\end{bmatrix}

C

[10 00] \begin{bmatrix} 1 &0 \\\ 0&0\end{bmatrix}

D

[00 01] \begin{bmatrix}0& 0 \\\ 0 & 1\end{bmatrix}

Answer

[10 00] \begin{bmatrix} 1 &0 \\\ 0&0\end{bmatrix}

Explanation

Solution

Under the given transformation, a point (x, y) is transformed to (x, 0), i.e., the foot of perpendicular from (x, y) on the x-axis. Now x=1x+0yx = 1x + 0y and 0=0x+0y0 = 0x + 0y, therefore, the required matrix of the transformation is [10 00] \begin{bmatrix} 1 & 0 \\\ 0&0\end{bmatrix}