Solveeit Logo

Question

Question: The transformation due to the reflection of \((x,y)\) through the origin is described by the matrix...

The transformation due to the reflection of (x,y)(x,y) through the

origin is described by the matrix

A

[0001]\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}

B

$\begin{bmatrix}

  • 1 & 0 \ 0 & - 1 \end{bmatrix}$
C

$\begin{bmatrix} 0 & - 1 \

  • 1 & 0 \end{bmatrix}$
D

[1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Answer

$\begin{bmatrix}

  • 1 & 0 \ 0 & - 1 \end{bmatrix}$
Explanation

Solution

If (x,y)\left( x^{'},y^{'} \right) is the new position

x=(1)x+0.yx ^ { \prime } = ( - 1 ) x + 0 . y y=0.x+(1)ydy^{'} = 0.x + ( - 1)yd

\therefore $\begin{bmatrix} x^{'} \ y^{'} \end{bmatrix} = \begin{bmatrix}

  • 1 & 0 \ 0 & - 1 \end{bmatrix}\begin{bmatrix} x \ y \end{bmatrix}$

Transformation matrix is $\begin{bmatrix}

  • 1 & 0 \ 0 & - 1 \end{bmatrix}$