Solveeit Logo

Question

Question: The trajectory of a projectile in a vertical plane isy = ax – bx<sup>2</sup>,where a and b are const...

The trajectory of a projectile in a vertical plane isy = ax – bx2,where a and b are constants and x and y are respectively horizontal and vertical distances of the projectile from the point of projection. The maximum height attained by the particle and the angle of projection from the horizontal are:

A

b22a,tan1(b)\frac{b^{2}}{2a},\tan^{- 1}(b)

B

a2b,tan1(2a)\frac{a^{2}}{b},\tan^{- 1}(2a)

C

a24b,tan1(a)\frac{a^{2}}{4b},\tan^{- 1}(a)

D

2a2b,tan1(a)\frac{2a^{2}}{b},\tan^{- 1}(a)

Answer

a24b,tan1(a)\frac{a^{2}}{4b},\tan^{- 1}(a)

Explanation

Solution

Q y = ax – bx2

a = tan q and g2u2cos2θ=b\frac { g } { 2 u ^ { 2 } \cos ^ { 2 } \theta } = b

and u2sin2θ2g\frac { u ^ { 2 } \sin ^ { 2 } \theta } { 2 g } = H

or g2u2cos2θ×u2sin2θ2 g=Hb\frac { \mathrm { g } } { 2 \mathrm { u } ^ { 2 } \cos ^ { 2 } \theta } \times \frac { \mathrm { u } ^ { 2 } \sin ^ { 2 } \theta } { 2 \mathrm {~g} } = \mathrm { Hb }

or tan2θ4=Hb\frac { \tan ^ { 2 } \theta } { 4 } = \mathrm { Hb } or H = a24 b\frac { \mathrm { a } ^ { 2 } } { 4 \mathrm {~b} } and q = tan–1(1)