Solveeit Logo

Question

Question: The tractor A is used to hoist the bale B with the pulley arrangement shown. If A has a forward velo...

The tractor A is used to hoist the bale B with the pulley arrangement shown. If A has a forward velocityvA, determine an expression for the upward velocity vB of the bale in terms of x.

A

vAxh\frac { \mathrm { v } _ { \mathrm { A } } \mathrm { x } } { \mathrm { h } }

B

12vAxh2+x2\frac { 1 } { 2 } \frac { \mathrm { v } _ { \mathrm { A } } \mathrm { x } } { \sqrt { \mathrm { h } ^ { 2 } + \mathrm { x } ^ { 2 } } }

C

12vAhh2+x2\frac { 1 } { 2 } \frac { \mathrm { v } _ { \mathrm { A } } \mathrm { h } } { \sqrt { \mathrm { h } ^ { 2 } + \mathrm { x } ^ { 2 } } }

D

vAhx\frac { v _ { \mathrm { A } } \mathrm { h } } { \mathrm { x } }

Answer

12vAxh2+x2\frac { 1 } { 2 } \frac { \mathrm { v } _ { \mathrm { A } } \mathrm { x } } { \sqrt { \mathrm { h } ^ { 2 } + \mathrm { x } ^ { 2 } } }

Explanation

Solution

We designate the position of the tractor by the coordinate x and the position of the bale by the coordinate y, both measured from a fixed reference. The total constant length of the cable is

L = 2(h – y) + l = 2 (h – y) + h2+x2\sqrt { h ^ { 2 } + x ^ { 2 } }

Differentiation with time yields

0 = – 2y˙2 \dot { \mathrm { y } } + xx˙h2+x2\frac { \mathrm { x } \dot { \mathrm { x } } } { \sqrt { \mathrm { h } ^ { 2 } + \mathrm { x } ^ { 2 } } }

Substituting vA = X˙\dot { \mathrm { X } } and vB = y˙\dot { \mathrm { y } } gives

vB = 12\frac { 1 } { 2 } xvAh2+x2\frac { \mathrm { xv } _ { \mathrm { A } } } { \sqrt { \mathrm { h } ^ { 2 } + \mathrm { x } ^ { 2 } } }