Solveeit Logo

Question

Question: The total resistance in the parallel combination of three resistance \(r_{2}\), and 5\(\rho\) is...

The total resistance in the parallel combination of three resistance r2r_{2}, and 5ρ\rho is

A

r1r2ρ2\frac{r_{1}}{r_{2}}\frac{\rho}{2}

B

r2r1r1r2ρ4π\frac{r_{2} - r_{1}}{r_{1}r_{2}}\frac{\rho}{4\pi}

C

r1r2r2r1ρ4π\frac{r_{1}r_{2}}{r_{2} - r_{1}}\frac{\rho}{4\pi}

D

2Ω,4Ω2\Omega,4\Omega

Answer

2Ω,4Ω2\Omega,4\Omega

Explanation

Solution

: In the parallel combination of three resistances, the equivalent resistance is.,

1Req=1R1+1R2+1R3\frac{1}{R_{eq}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}

or, 1Req=19+17+15=35+45+63315=143315\frac{1}{R_{eq}} = \frac{1}{9} + \frac{1}{7} + \frac{1}{5} = \frac{35 + 45 + 63}{315} = \frac{143}{315}

Req=315143=2.02ΩR_{eq} = \frac{315}{143} = 2.02\Omega