Solveeit Logo

Question

Question: The total number of ways of dividing mn objects into n equal groups, when the groups are distinguish...

The total number of ways of dividing mn objects into n equal groups, when the groups are distinguishable is

A

mn(m)nn\frac{\angle\underline{mn}}{(\angle m)^{n}\angle n}

B

mn(m)nn\frac{\angle\underline{mn}}{(\angle m)^{n}n}

C

mn6mun(m)n\frac{\angle\underline{mn}\mspace{6mu}\angle n}{(\angle m)^{n}}

D

mn(m)n\frac{\angle\underline{mn}}{(\angle m)^{n}}

Answer

mn(m)n\frac{\angle\underline{mn}}{(\angle m)^{n}}

Explanation

Solution

In this case the groups are distinguishable, therefore, the required number

= mnCmxmnmCmxmn2mCmx...x2mCmxmCmmnC_{m}x^{mn - m}C_{m}x^{mn - 2m}C_{m}x...x^{2m}C_{m}x^{m}C_{m}

(Note that each group contains m objects)

= mn(m)n\frac{\angle mn}{(\angle m)^{n}}