Solveeit Logo

Question

Question: The total number of ways of dividing mn objects into n equal groups of m each, when the groups are n...

The total number of ways of dividing mn objects into n equal groups of m each, when the groups are not distinguishable is

A

mn(m)nn\frac{\angle\underline{mn}}{(\angle m)^{n}\angle n}

B

mn(m)nn\frac{\angle\underline{mn}}{(\angle m)^{n}n}

C

mn6mun(m)n\frac{\angle\underline{mn}\mspace{6mu}\angle n}{(\angle m)^{n}}

D

mn(m)n\frac{\angle\underline{mn}}{(\angle m)^{n}}

Answer

mn(m)nn\frac{\angle\underline{mn}}{(\angle m)^{n}\angle n}

Explanation

Solution

Since, the groups are interchangeable, we shall divide by n\angle n. The total number of ways

mnCmxmnmCmxmn2mCmx...x2mCmxmCmn\frac{mnC_{m}x^{mn - m}C_{m}x^{mn - 2m}C_{m}x...x^{2m}C_{m}x^{m}C_{m}}{\angle n} mn(m)nn\frac{\angle mn}{(\angle m)^{n}\angle n}