Solveeit Logo

Question

Mathematics Question on Binomial theorem

The total number of terms in the expansion of (x+a)47(xa)47{(x+a)^{47} - (x-a)^{47}} after simplification is

A

24

B

47

C

48

D

96

Answer

24

Explanation

Solution

Total number of terms in (x+a)n(xa)n(x+a)^{n}-(x-a)^{n}
={n+12 if n is odd  n2 if n is even =\begin{cases}\frac{n+1}{2} & \text { if } n \text { is odd } \\\ \frac{n}{2} & \text { if } n \text { is even }\end{cases}
\therefore Total number of terms in the expansion of
(x+a)47(xa)47=47+12[n(x+a)^{47}-(x-a)^{47}=\frac{47+1}{2} [\because n is odd ]]
=482=\frac{48}{2}
=24=24