Solveeit Logo

Question

Question: The total number of solution of equation \(\left| \left. \cot x \right| \right.=\cot x+\dfrac{1}{\si...

The total number of solution of equation cotx=cotx+1sinx\left| \left. \cot x \right| \right.=\cot x+\dfrac{1}{\sin x}, x belongs to [0,3π]\left[ 0,3\pi \right] is equal to
(a) 3
(b) 2
(c) 1
(d) 0

Explanation

Solution

Hint: We will apply the concept of modulus here which is carried out as if we have a\left| \left. a \right| \right. then the value of this modulus is equal to aa and a-a. This is because the modulus contains both the positive and negative sides of a. We will also use cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} to convert cotangent term into simpler form. Also, the use of the formula of cosx=cosy\cos x=\cos y which results in x=2nπ±yx=2n\pi \pm y in the equations will help to solve the question further.

Complete step-by-step solution -
We will first consider the given trigonometric expression cotx=cotx+1sinx\left| \left. \cot x \right| \right.=\cot x+\dfrac{1}{\sin x} ...(i). As cotx\cot x is in modulus so, we will use the formula of a\left| \left. a \right| \right. resulting into aa and a-a therefore, we get cotx\left| \left. \cot x \right| \right. as both cotx\cot x and cotx-\cot x. This splits the trigonometric equation (i) into cotx=cotx+1sinx\cot x=\cot x+\dfrac{1}{\sin x} and cotx=cotx+1sinx-\cot x=\cot x+\dfrac{1}{\sin x}. Now, we will consider these two equations one by one. We will consider the equation cotx=cotx+1sinx\cot x=\cot x+\dfrac{1}{\sin x} first. After cancelling cotangent we get,
cotx=cotx+1sinx 1=1+1sinx 1=1+1sinx 11=1sinx 0=1sinx \begin{aligned} & \cot x=\cot x+\dfrac{1}{\sin x} \\\ & \Rightarrow 1=1+\dfrac{1}{\sin x} \\\ & \Rightarrow 1=1+\dfrac{1}{\sin x} \\\ & \Rightarrow 1-1=\dfrac{1}{\sin x} \\\ & \Rightarrow 0=\dfrac{1}{\sin x} \\\ \end{aligned}
By using the property of reciprocal, we have
0=1sinx 01=1sinx sinx1=10 sinx= \begin{aligned} & 0=\dfrac{1}{\sin x} \\\ & \Rightarrow \dfrac{0}{1}=\dfrac{1}{\sin x} \\\ & \Rightarrow \dfrac{\sin x}{1}=\dfrac{1}{0} \\\ & \Rightarrow \sin x=\infty \\\ \end{aligned}
As we know that the limit of the values for sinx\sin x lies between 1 and – 1. Thus this equation is not valid here.
Now we will consider the other equation which is cotx=cotx+1sinx-\cot x=\cot x+\dfrac{1}{\sin x}. In this equation we will convert it into simpler form by substituting cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} in cotx=cotx+1sinx-\cot x=\cot x+\dfrac{1}{\sin x} equation. After doing this we get,
cotx=cotx+1sinx cosxsinx=cosxsinx+1sinx cosxsinx=cosx+1sinx cosxsinx=cosx+1sinx cosx=cosx+1 cosxcosx=1 2cosx=1 cosx=12 \begin{aligned} & -\cot x=\cot x+\dfrac{1}{\sin x} \\\ & \Rightarrow -\dfrac{\cos x}{\sin x}=\dfrac{\cos x}{\sin x}+\dfrac{1}{\sin x} \\\ & \Rightarrow -\dfrac{\cos x}{\sin x}=\dfrac{\cos x+1}{\sin x} \\\ & \Rightarrow -\dfrac{\cos x}{\sin x}=\dfrac{\cos x+1}{\sin x} \\\ & \Rightarrow -\cos x=\cos x+1 \\\ & \Rightarrow -\cos x-\cos x=1 \\\ & \Rightarrow -2\cos x=1 \\\ & \Rightarrow \cos x=-\dfrac{1}{2} \\\ \end{aligned}
Now we will apply the value of the term cos(π3)=12\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} in the above equation. Thus, we now have cosx=cos(π3)\cos x=-\cos \left( \dfrac{\pi }{3} \right). As we know that the value of the cosine is negative in the second and third quadrants so, we will consider second quadrant first. Therefore, by using the formula cos(x)=cos(πx)\cos \left( x \right)=\cos \left( \pi -x \right) we will get
cosx=cos(ππ3) cosx=cos(3ππ3) cosx=cos(2π3) \begin{aligned} & \cos x=\cos \left( \pi -\dfrac{\pi }{3} \right) \\\ & \Rightarrow \cos x=\cos \left( \dfrac{3\pi -\pi }{3} \right) \\\ & \Rightarrow \cos x=\cos \left( \dfrac{2\pi }{3} \right) \\\ \end{aligned}
Now we will apply the formula of cosx=cosy\cos x=\cos y which results into x=2nπ±yx=2n\pi \pm y in the equation therefore we now have x=2nπ±2π3x=2n\pi \pm \dfrac{2\pi }{3}. Here n = ..., -1, 0, 1, ... As we put the value of n = 0 this results into x=2nπ±2π3x=2n\pi \pm \dfrac{2\pi }{3}. So, by substituting the values of n = 0 we get,
x=2(0)π±2π3 x=±2π3 \begin{aligned} & x=2\left( 0 \right)\pi \pm \dfrac{2\pi }{3} \\\ & \Rightarrow x=\pm \dfrac{2\pi }{3} \\\ \end{aligned}
Now we get two values of x which are x=+2π3x=+\dfrac{2\pi }{3} and x=2π3x=-\dfrac{2\pi }{3}. Now, as we can clearly see that x=+2π3x=+\dfrac{2\pi }{3} belongs to the closed interval [0,3π]\left[ 0,3\pi \right] while x=2π3x=-\dfrac{2\pi }{3} does not.
Similarly, the value of the cosine is negative third quadrant therefore by using the formula cos(x)=cos(π+x)\cos \left( x \right)=\cos \left( \pi +x \right) we will get
cosx=cos(π+π3) cosx=cos(3π+π3) cosx=cos(4π3) \begin{aligned} & \cos x=\cos \left( \pi +\dfrac{\pi }{3} \right) \\\ & \Rightarrow \cos x=\cos \left( \dfrac{3\pi +\pi }{3} \right) \\\ & \Rightarrow \cos x=\cos \left( \dfrac{4\pi }{3} \right) \\\ \end{aligned}
As, x=2nπ±4π3x=2n\pi \pm \dfrac{4\pi }{3}. So, n = 0 this results into,
x=2(0)π±4π3 x=±4π3 \begin{aligned} & x=2\left( 0 \right)\pi \pm \dfrac{4\pi }{3} \\\ & \Rightarrow x=\pm \dfrac{4\pi }{3} \\\ \end{aligned}
Here, only x=+4π3x=+\dfrac{4\pi }{3} belongs to the closed interval [0,3π]\left[ 0,3\pi \right].
Since, these values were till 2 cycles of π\pi . Now we will take the value from the third cycle of π\pi which is given by 2π\pi by the value of the cosine is negative third quadrant therefore by using the formula cos(x)=cos(3πx)\cos \left( x \right)=\cos \left( 3\pi -x \right) we will get
cosx=cos(3ππ3) cosx=cos(9ππ3) cosx=cos(8π3) \begin{aligned} & \cos x=\cos \left( 3\pi -\dfrac{\pi }{3} \right) \\\ & \Rightarrow \cos x=\cos \left( \dfrac{9\pi -\pi }{3} \right) \\\ & \Rightarrow \cos x=\cos \left( \dfrac{8\pi }{3} \right) \\\ \end{aligned}
By the formula of cosx=cosy\cos x=\cos y which results into x=2nπ±yx=2n\pi \pm y in the equation therefore we now have x=2nπ±8π3x=2n\pi \pm \dfrac{8\pi }{3} and n = 0 results into,
x=2(0)π±8π3 x=±8π3 \begin{aligned} & x=2\left( 0 \right)\pi \pm \dfrac{8\pi }{3} \\\ & \Rightarrow x=\pm \dfrac{8\pi }{3} \\\ \end{aligned}
Clearly, only x=+8π3x=+\dfrac{8\pi }{3} belongs to the closed interval [0,3π]\left[ 0,3\pi \right] while x=8π3x=-\dfrac{8\pi }{3} does not.
Hence the required values are x=+4π3,x=+2π3x=+\dfrac{4\pi }{3},x=+\dfrac{2\pi }{3} and x=+8π3x=+\dfrac{8\pi }{3}.

Note: As we know that the value of the cosine is negative in the second and third quadrants also we have the closed interval [0,3π]\left[ 0,3\pi \right] for x therefore we will have the values for x which are in second and third quadrant only. Alternatively, we can solve the equation cotx=cotx+1sinx-\cot x=\cot x+\dfrac{1}{\sin x} like below, and we can solve as usual.
cotx=cotx+1sinx cotxcotx=1sinx 2cotx=1sinx \begin{aligned} & -\cot x=\cot x+\dfrac{1}{\sin x} \\\ & \Rightarrow -\cot x-\cot x=\dfrac{1}{\sin x} \\\ & \Rightarrow -2\cot x=\dfrac{1}{\sin x} \\\ \end{aligned}